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Motivation for Automatic Failure Diagnosis

@ Software systems are practically never free of faults
@ Software failures have great influence on our lives

o Large effort for manual diagnosis and debugging
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Motivation for Automatic Failure Diagnosis

Software systems are practically never free of faults

@ Software failures have great influence on our lives

Large effort for manual diagnosis and debugging

Automated processes are required

@ Failure detection
@ Fault localization

© Fault removal
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Monitoring of System Behavior

@ Log files

User interfaces

Resources

Control flow

— Instrumentation of hardware/software

Timing behavior
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Monitoring of System Behavior

@ Log files

@ User interfaces
@ Resources

@ Control flow

e Timing behavior

— Instrumentation of hardware/software

Kieker [Rohr et al., 2008]
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Failure Diagnosis

Model checking: explicit messages

Timing behavior: throughput, latency, response times

Anomaly detection: statistical analysis

Correlation: connection of information from different sources

@ Goal: cause instead of symptoms

Visualization
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Goals

Goals

@ Design of an approach for fault localization

» Timing behavior anomaly detection [Rohr, 2008]

» Calling dependencies between components
(dependency graphs)

» Focus on event correlation

= "Anomaly Correlator”

@ Evaluation: Case Study

» Java Web Application: iBATIS JPetStore
» Workload Generation: Markov4JMeter [van Hoorn et al., 2008]
» Fault Injection

Nina Marwede (Univ. of Oldenburg) Failure Diagnosis based on Timing Behavior Aug 26, 2008 6 /36



Approach
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Approach

Solution Idea

@ Correlation: Draw conclusions from the arrangement
of the anomalies in the calling dependency graph
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Approach Implementation

Implementation

@ Extension to existing software “Kieker” [Rohr et al., 2008]

@ Tpmon stores monitoring data, Tpan with its plug-ins analyzes it

e Correlator: Plug-in for Tpan

Database | |

Tpan
Correlator
| |© Model A
Building isualization
Anomaly @ Execution ® Cause
Detector Aggregation Estimation

Textual Output
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Approach Assumptions

Assumptions

@ Correct failure detection

Correct anomaly scoring

@ Failure has distinct cause

Exactly one failure in the observation period

Anomaly propagation
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Input Data
Input Data

@ Calling dependencies
between operations

Comp VM Start RT Anomaly
. . .. A X 0001 8 0.6
© Anomalies in the timing c Y 0002 1  -02
behavior of executions B X 0004 4 09
C Y 0006 2 0.3
Nina Marwede (Univ. of Oldenburg) Failure Diagnosis based on Timing Behavior Aug 26, 2008

11/ 36



Approach Step 1: Preparation

Step 1: Preparation of Data Structures

@ Generation of calling dependency graphs from traces
@ Connection of anomalies with software architecture
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doGet(HttpServletRequest,HttpServietResponse) doPost(HttpServletRequest,HttpServietResponse)
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Challenges
Challenges (1/2)

Aggregation:
How to aggregate a number of anomaly scores into one value?
@ Four places are involved:
Three architectural levels, and neighbors on operation level

@ Five methods are evaluated:
Median, power mean (three exponents), maximum

Number of
executions > O . 2

Anomaly score
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Approach

Challenges (2/2)

Correlation:
How to recognize the propagation of an anomaly?

@ Consider the perspective of each component

BN e
-ﬂm
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Approach

Challenges (2/2)

Correlation:
How to recognize the propagation of an anomaly?

@ Consider the perspective of each component
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ol
Challenges (2/2)

Correlation:
How to recognize the propagation of an anomaly?
@ Consider the perspective of each component

@ Three algorithms are evaluated:
Trivial, simple, advanced
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Approach Step 2: Processing

Step 2: Processing of Anomaly Scores

Three algorithms
Q@ Trivial:
Simple aggregation, no correlation
@ Simple:
Simple aggregation, “pessimistic” correlation

© Advanced:
Weighted configurable aggregation, “optimistic” correlation
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Trivial Algorithm

o Aggregation: Unweighted arithmetic mean on each level

@ Correlation: None

Application

‘ Deployment Context ‘ Deployment ...

‘ Component | ‘ Component | ‘ Component | -

- ‘ Operation

‘ Operation

‘ Operation ‘ ‘ Operation

‘ Operation
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Simple Algorithm

Q@ Rule 1:
Mean of anomaly ratings of directly connected callers . ..
relative high? = Increase rating
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Simple Algorithm

@ Rule 2:
Maximum of anomaly ratings of directly connected callees . ..
relative high? = Decrease rating
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Advanced Algorithm

o Aggregation
» In addition to arithmetic mean: ﬁ D"tl
h ] O30 ﬁ

median, power mean, maximum
4312 4612

e Correlation *

» Consideration of call frequencies o o
(edges in CDG) ﬂ —
» Transitive closure of callers -
» Transitive closure of callees *
-
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Spek Clian:
Step 3: Output

© Text output

Components sorted by cause rating in descending order:

8.897 persistence.sqlmapdao.ItemSqlMapDao
7.78% service.hessian.server.CatalogService
6.917, persistence.sqlmapdao.ProductSqlMapDao
6.83), presentation.OrderBean

6.71% org.apache.struts.action.ActionServlet
6.03% persistence.sqlmapdao.AccountSqlMapDao

Cause rating for:

» Deployment contexts (e.g., virtual machines)
» Components (e.g., Java classes)

» Operations (e.g., Java methods)
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Spek Clian:
Step 3: Output (cont'd)

@ Visualization of the application hierarchy structure
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LVEEl M Step 3: Output

Visualization Parameters

Hierarchy levels

Virtual Machine 'klotz"

Node and edge annotations
Color shade spectrum
Embedded anomaly score histograms

org apache struts action ActionServiet

Additional explanations, caption, legend, ...

—

presentation AccountBean”

GoGet HtpServietRequest HitpServietResponse)

service h

OrderService || Service.h

insertOrder(Order)

‘getAccount(String,String)

Virtual Machine 'puck’

getNextid(String)

service.hessian.gerver.OrderService

insertOrder(Order)

Virtual Machine 'scooter

séryice.hessian.server. AccountService

getAccount(String,String)

persistencd sqimapd:

getAccount(String,String)
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Goals & Metrics

Goals
@ Proof of concept
@ Quantitative evaluation of the Correlator

@ Appropriate visualization

Metrics
@ Success rating:
Percent value comparing the highest rated element to the element
where the fault injection happened.
@ Clearness rating:
Reflects the visual impression of contrast.
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Experiment Setup
Experiment Setup

@ Non-trivial software system: JPetStore

Workload generation

» Probabilistic user behavior
» Constant number of users

Fault injection

@ Monitoring using Tpmon

Application distributed to 4 machines

Distributed JPetStore

Storage

[—
Fault Injection “C/ g %’ I =
omponent i mon
\___4: u\p p
JMeter with Component B Tpmon
Markov4JMeter

Nina Marwede (Univ. of Oldenburg)

Failure Diagnosis based on Timing Behavior

Tpan

Anomaly
Detector

I

Correlator

Aug 26, 2008 24 / 36



Experiment Setup
Distributed JPetStore

@ 4 deployment contexts + DBMS

@ 34 operations are instrumented with monitoring probes

«execution environment» «device»
AccountService Account Database
/© &) =)
«execution environment» «execution environment» Account AccountDatabase
Presentation Catalog =
2 CatalogService «component» ] B CatalogDatabase

Presentation ‘ O Catalog

«execution environment» «component» =

Order OrderDatabase

=
\@
OrderService Order
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(@SN  Experiment Setup

Fault Injection

@ Programming faults
» Duplicated code execution
» Empty DB query result set
@ Database connection slowdown
» Thread.sleep(10)

© Hard disk misconfiguration
» hdparm -X mdmal /dev/hda

@ Resource intensive processes
» “Reiner's Fork Bomb”

@ CPU throttling
» To simulate a broken CPU cooling system
» cpufreqg-set -f 800
» Clock duty cycle of 50%
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Case Study

Experiment Statistics

@ 42 experiment runs + 3 fault-free runs
@ 20 hours total experiment time
@ 16 million monitored executions

@ 100 MB data per experiment run

1
40587

Virtual Machine 'klotz'
[ 99975/194716 | -0,03 | 25,25% ]

- ~

7752136 1092 T~ 99
SA
Virtual Machine ‘tier' Virtual Machine 'scooter' Virtual Machine 'puck’
[ 46078/78592 | 0,10 | 28,62% ] [ 812/2184 | -0,16 | 21,97% ] [ 1389/2988 | -0,07 | 24,17% ]
. Liinibeg |iaeligd
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Case Study WAGEIEH

Correlator Configuration

@ Algorithm selection — 3 implemented; extendable
@ Algorithm parameters — 11 variables for advanced algorithm
@ Result export detail level and file names — 7 variables

@ Visualization parameters — 12 feature switches, 9 color selections,
5 font settings, 4 others (30 total)

— Java properties
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Case Study ESIIS

Results: Quality of the Correlation Algorithms

| No. | Injection Variant | Trivial | Simple | Advanced | Optimized |
1 Programming fault 1 + + - - o
2 Programming fault 2 + + o ++
3 Programming fault 3 - - + S
4 DB conn. slowdown 1 + ++ o ++
5 DB conn. slowdown 2 + ++ + ++
6-14 other --
] 1-5 ‘ Averages ‘ 2.4 ‘ 2.0 ‘ 2.8 1.4
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Case Study ESIIS

Results: Visualization Clearness — Trivial vs. Optimized

Virtual Machine 'kiotz'
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Case Study ESIIS

Results

Fault Scenario 5: DB Connection Slowdown Fault Scenario 3: Programming Fault
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Summary

Summary & Conclusions

Summary

@ New approach for failure diagnosis
@ Implementation and evaluation of correlation algorithms

e Visualization of the results (vector graphic export)

Conclusions

@ Good chance of pointing to the right cause
@ Small risk of denoting false positives
o At least large parts are declared as not containing a fault

@ Simpler algorithms show more the effect, less the cause
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(@G ITECHEN  Future Work

Future Work

e Continuous analysis and visualization (in progress)

(“Software-Betriebsleitstand") [Giesecke et al., 2006]
@ Application to industry system data (in progress)

@ Recognition of known anomaly patterns learned from training data

@ Improved interactive user interface
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Thanks for your attention.
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Fault Injection Requirements

Requirements for Fault Injection

Noticeable effect

No administrative messages
Diversity in position

All hierarchy levels

Realistic, and repeatable

Increasing & decreasing the response times
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