
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Abteilung Software Engineering

Diploma Thesis

Automatic Failure Diagnosis based on
Timing Behavior Anomaly Correlation
in Distributed Java Web Applications

Nina Sophie Marwede

August 14, 2008

First examiner Prof. Dr. Wilhelm Hasselbring
Second examiner MIT Matthias Rohr
Advisor Dipl.-Inform. André van Hoorn
Advisor MIT Matthias Rohr

Abstract
One approach to handling software failures, especially in large distributed systems, is
the monitoring of components for quick reaction and recovery to reduce downtimes and
maintenance costs. In previous work, our group has developed tools to monitor and
evaluate the timing behavior of Java software systems to detect anomalies, which may
be indicators of erroneous behavior.

This diploma thesis enhances the approach to isolate the root cause for failures in dis-
tributed systems. Existing technologies are connected and extended to aggregate anoma-
lies to a failure diagnosis. An anomaly correlator is developed that combines timing
behavior anomalies using derived dependency graphs. It is then applied to a sample
application under the influence of workload generation and fault injection. The results
are visualized as colored graphs that can be exported to various image formats.

iii

Contents

1 Introduction 1
1.1 Example . 3
1.2 Goals . 3

1.2.1 Anomaly Correlator . 3
1.2.2 Case Study . 5

1.3 Formalia . 5
1.4 Document Structure . 6

2 Foundations 7
2.1 Automatic Failure Diagnosis . 7
2.2 Timing Behavior Anomalies . 9
2.3 Event Correlation . 11
2.4 Distributed Java Web Applications . 12
2.5 Related Work . 14

3 Approach 15
3.1 Solution Idea . 17

3.1.1 Model building . 18
3.1.2 Aggregation . 18
3.1.3 Correlation . 19
3.1.4 Visualization . 20

3.2 Requirements . 20
3.3 Data Structures . 22

3.3.1 Input . 22
3.3.2 Output . 22
3.3.3 Structure Classes . 24

3.4 Dependency Graph Creation . 26
3.5 Analysis . 28

3.5.1 Preconditions . 29
3.5.2 Strategy . 30
3.5.3 Realization . 31

3.6 Results . 41
3.6.1 Visualization . 41
3.6.2 Automation . 45

v

Contents

4 Evaluation 47
4.1 Goals and Metrics . 48
4.2 Experiment Setup . 49

4.2.1 Application under Analysis . 51
4.2.2 Monitoring . 52
4.2.3 Workload Generation . 52

4.3 Fault Injection . 54
4.3.1 Programming Faults . 55
4.3.2 Database Connection Slowdown 58
4.3.3 Hard Disk Misconfiguration . 60
4.3.4 High System Load . 61
4.3.5 CPU Throttling . 61

4.4 Experiments . 62
4.4.1 Activities . 62
4.4.2 Results . 63

4.5 Analysis . 67
4.5.1 Experiment Selection . 67
4.5.2 Examination Activities . 68
4.5.3 Default Parameter Selection . 69
4.5.4 Three Algorithms . 69
4.5.5 In-Out-Relation . 71
4.5.6 Edge Weight Methods . 71
4.5.7 Mean Calculation Methods . 73
4.5.8 Neighborhood Mean Distance Exponents 73
4.5.9 Three Algorithms with New Parameters 77
4.5.10 Cross-Check Appliance to Other Fault Scenarios 80

4.6 Summary . 81

5 Conclusions 83
5.1 Achievements . 84
5.2 Limitations . 85
5.3 Future Work . 89

vi

Contents

A Experiment Setup Details 91
A.1 Experiment Activities . 91
A.2 Instrumentation of the JPetStore . 91
A.3 Preparations for Fault Injection . 94

B Correlator Plug-in Usage 95
B.1 Package Content . 95
B.2 Tpan Integration . 97

B.2.1 Machine Interface . 97
B.2.2 Human Interface . 98

B.3 Correlator Configuration . 98
B.3.1 General . 98
B.3.2 Presentation . 98
B.3.3 Algorithm . 99

B.4 Experiment Instructions . 100
B.5 New Algorithms . 100

Bibliography 101

Acknowledgement 105

Declaration 107

vii

List of Figures

1.1 Relation between cost and dependability 2
1.2 Anomalies plus dependencies lead to an estimation about failure cause . 4
1.3 Possible distribution of the JPetStore . 5

2.1 Error propagation . 8
2.2 Kieker architecture . 9
2.3 Load-time weaving, a method for Aspect Oriented Programming 11
2.4 Three-tier architecture . 13
2.5 Structure of Remote Message Invocation 13

3.1 Overview of the analysis . 18
3.2 Example of the first results of the analysis 19
3.3 Data structures produced by Tpan . 22
3.4 Structural hierarchy tree . 23
3.5 Dependency net . 23
3.6 Structural classes of the Correlator . 25
3.7 Construction of the dependency graph 27
3.8 Example of anomaly propagation . 28
3.9 Example of a histogram of anomaly scores 32
3.10 Overview of the algorithm variants . 33
3.11 Construction of the list of distances and weights 36
3.12 Anomaly correlation on operation level 38
3.13 The inhibition and the logistic sigmoid function 40
3.14 Examples of the increase and decrease functions in advanced correlation . 40
3.15 Example of the textual output of the Correlator’s results 42
3.16 Class diagram focused on the presentation classes 43
3.17 Example of the graphical result of the Correlator 44
3.18 Example of an experiment batch control file 46

4.1 Conceptual overview of the experiment setup 50
4.2 iBATIS JPetStore 5 demo application . 51
4.3 Deployment of the JPetStore components 52
4.4 Database schema for the monitoring of executions 52
4.5 Apache JMeter 2.3 with Markov4JMeter 1.0 53
4.6 Dependency graph of the JPetStore (Part 1) 57
4.7 Dependency graph of the JPetStore (Part 2) 59

ix

List of Figures

4.8 Manipulation of the hard disk transfer mode with hdparm 60
4.9 Example of a Sysstat plot during an experiment run 64
4.10 Example of a response time plot during an experiment run 64
4.11 Example of the result of a simple anomaly correlation 65
4.12 Sysstat plot showing the impact of system load 66
4.13 Charts of the clearness ratings for three algorithms 70
4.14 Charts of the clearness ratings for a set of in-out-relations 72
4.15 Charts of the clearness ratings for two edge weight methods 72
4.16 Charts of the clearness ratings for five mean methods (Part 1) 75
4.17 Charts of the clearness ratings for five mean methods (Part 2) 76
4.18 Charts of the clearness ratings for a set of distance exponents 76
4.19 Comparison of the algorithms with optimized parameters 78
4.20 Comparison of the graphs for the trivial and optimized algorithm 79
4.21 Comparison of the algorithms with other scenarios 80

5.1 Result graph of an analysis using the trivial algorithm 86
5.2 Result graph of an analysis using the advanced algorithm 87

A.1 Activity diagram of the experiments . 92

x

List of Tables

4.1 Summary of programming faults and effects 55
4.2 Source code manipulations applied to the JPetStore 56
4.3 Source code changes to simulate a database slowdown. 59
4.4 Summary of the fault injection scenarios 63
4.5 Summary of the fault injection results . 66
4.6 Results of the experimental comparison of three algorithms 70
4.7 Results of the experimental comparison of the in-out-relation 71
4.8 Results of the experimental comparison of the edge weight method 72
4.9 Results of the experimental comparison of mean calculation methods . . 74
4.10 Results of the experimental comparison of the neighbor distance exponent 77
4.11 Comparison of starting and optimized parameters 77
4.12 Results of the advanced algorithm with optimized parameters 78
4.13 Results of the cross-check with other scenarios 80
4.14 Overview of the examination results on five scenarios 81

xi

Chapter 1

Introduction
Software systems exceeding a certain level of complexity are never free of faults. Software
failures increasingly affect our lives, bringing us operational outages, expensive mainte-
nance as well as annoyed customers. Developers often work under high pressure of time
and money, and the value of their work is rather measured in functionality and design
than in reliability and security. Although most professionals know by now that these
aspects should be considered early in the development phase, this is rarely achieved to
complete satisfaction. With the possibility to easily deploy software patches over the
Internet, it has unfortunately become usual to release unfinished software and to fix
problems not before they arise, if ever.

Lyu [1996, p. 4] brings it to the point:

“The demand for complex hardware/software systems has increased more rapidly
than the ability to design, implement, test, and maintain them. When the re-
quirements for and dependencies on computers increase, the possibility of crises
from computer failures also increases. The impact of these failures ranges from
inconvenience (e.g. malfunctions of home appliances) to economic damage (e.g.,
interruptions of banking systems) to loss of life (e.g. failures of flight systems or
medical software). Needless to say, the reliability of computer systems has become
a major concern for our society.

There are many approaches to prevent faults right from the beginning, to eliminate
them during the development, and to work around them at runtime, thus increasing
dependability. The modern architect’s possibilities to increase software quality range
from promising new programming languages over formal specification techniques and
computer-aided development models as well as verification and validation processes up
to Extreme Programming – but you can never be sure to catch them all, or to make the
system behave sufficiently tolerant in every use case. Even a software that conforms per-
fectly to its specification does not guarantee to perform perfectly, since the specification
itself may contain faults. Although it is possible to produce such fault-free software, “it is
extremely difficult and expensive. [. . .] Therefore, software developing organizations ac-
cept, explicit or implicit, that some faults remain in their software” [Sommerville, 2001,
p. 403]. Accordingly, as backed by Figure 1.1, since most products must not be very
expensive, the people got used to have faults in their everyday applications.

1

Chapter 1 Introduction

Dependability

Low Medium High Very high Extremely high

C
o
s
t

Figure 1.1: Relation between cost and dependability, based on Sommerville [2001, p. 364],
who has the opinion that this relation is exponential, and because of that,
the reliability of a system could not be 100% proven.

On the other hand, there are large, business-critical software systems, where “restart
and recovery” is not the preferred strategy to handle failures. Instead, the problem
should be located and solved. Especially in distributed systems, when a failure occurs,
the root cause is often hard to identify. Therefore, automated tools and methods for
fast diagnosis and efficient fault localization are important to minimize maintenance and
incidental costs.

This diploma thesis examines a new method to localize the cause of failures in distributed
Java applications. The failure diagnosis is based on the detection of anomalies in the
system’s timing behavior, and also considers its architecture. Our group’s approach is
to monitor the system continuously, comparable to operation control centers that are
common in industrial environments, e.g. power stations [Giesecke et al., 2006]. Instead
of simply comparing the system’s behavior with a set of pre-defined “normal” parameters
to detect anomalies, our detector relies on statistical information considering different
system usages. From this, in combination with dependency graphs that are reconstructed
from the monitoring data, the root cause of a failure can be estimated.
For evaluation, we use the Java Web application iBATIS JPetStore1 which has already

been instrumented so that information about runtime behavior is collected and stored
into a database [Rohr et al., 2008b]. After a system failure has occurred, our tools can
immediately analyze the recorded data and attempt to estimate the causing component.
In the field of dependability, the approach is related to fault avoidance and fault

tolerance. More precisely, the localization process is settled between fault detection
(“there’s a fault somewhere”) and fault removal (“got it”).

1http://ibatis.apache.org

2

http://ibatis.apache.org

1.1 Example

1.1 Example
A scenario where the approach can be used may be the following: Imagine a large,
business-critical software system. Many users concurrently access it, for example by
browsing through the catalog, adding products to their shopping cart, managing their
personal data, or doing financial transactions. This software system, deployed on different
servers, is crashing after a long runtime, which should be recognized by monitoring tools
as significant anomalous behavior.
Typically, if a restart of the system is not sufficient, an administrator would now

manually review a large amount of debug and log messages. Fortunately, the monitor-
ing infrastructure has been continuously writing monitoring data into a database. An
anomaly detector evaluates the data of a certain time period, and rates every single
execution (invocation of a function) whether it was behaving normal, or not.
Now the goal is to build up a model of the software system from this collection, further

evaluate the monitoring data, and assign probability estimations to each component, and
to the corresponding virtual machines for being the cause of the failure. This provides
an alternative to manual failure diagnosis which tends to be time-consuming and error-
prone.

1.2 Goals
There are two goals for the thesis: (1) An anomaly correlator shall be developed, and
(2) it has to be evaluated in a case study.

1.2.1 Anomaly Correlator
In the thesis, an approach has to be developed and implemented as a prototype that
transforms individually detected anomalies into a probability estimation for each com-
ponent to be the cause of a failure. The collected information about runtime behavior is
combined with the component dependencies. It localizes the possible causes of the failure
and rates them by their likeliness. Figure 1.2 sketches the context of the “Correlator” to
be created.
The main challenge is the choice of the fundamental strategy to generate a valid

and clear result. The processing should not be adjusted to a special application or
architecture, but rather follow a general concept. Since the algorithms will probably
have some parameters, an important secondary goal is to analyze their influence, e.g.
whether there exist generally usable values, or whether they have to be found out for
each monitored system. Another question is, to what extent the underlying anomaly
detector can be trusted.
Another important task is the visualization. Besides a simple textual report, the

results have to be presented in graphical form, showing the dependencies and the cause
percentages, supported by color.

3

Chapter 1 Introduction

Comp VM Start Anomaly

...

A X 0001 1

B Y 0002 0

C X 0004 1

B Y 0006 0

...

A B C

+

C o r r e l a t o r

ActionServlet

OrderService 328

RequestProcessor 148530

OrderBean

29055

AccountBean

20719

704

343

1654

1349

AbstractBean

330
334

4

14855

44561

+

Comp VM Cause

...

A X 33%

B Y 67%

C X 0%

...

A

C

B

X

Y

+

Figure 1.2: Timing anomalies plus calling dependencies lead to an estimation about fail-
ure cause.

4

1.3 Formalia

<<Component>>

:ShopControl

:Account

<<Component>>

:Cart

<<Component>>

:Catalog

<<Component>>

:Order

<<Component>>

Figure 1.3: Possible distribution of the JPetStore. It has been a monolithic application
before, but now its components can run in different deployment contexts.

1.2.2 Case Study
A case study will be performed to expose the concept of the Correlator to reasonably
realistic circumstances. The JPetStore has been chosen to be the testing application.
It has already been modularized so that it may be deployed over some (virtual) ma-
chines, as sketched in Figure 1.3, to match the aspect of distribution. Available tools
and methods for fault injection [Rohr et al., 2008b], probabilistic workload generation
(Markov4JMeter, [van Hoorn et al., 2008]), monitoring (Kieker, [Rohr et al., 2008b]), and
anomaly detection ([Rohr et al., 2008a]) will be set up. With the distributed deployment,
it will be easier to make targeted fault injection without having the components affect
each other. For example, high load can be simulated on a function by simply slowing it
down.
There are several topics to pay attention to. First, the criteria, where and how to

divide the components of the JPetStore, must be decided. Then suitable monitoring
points have to be set, and the mechanisms for fault injection have to be decided and
applied: Which kind of faults should be injected, and where to put them? One goal of
the experiments is whether there are distinct categories of faults that are better detected
than others. In order to benchmark the results, a metric has to be developed.
Because architectural migration is a complex task, in technical as well as conceptional

respect, this procedure is supported by the advisors of the thesis.

1.3 Formalia
• Important terms when mentioned the first time, or otherwise emphasized words or

sentences are in italic letters.

• Programming terms such as classes, attributes, packages and the like are in
typewriter letters.

• Footnotes contain URLs only.

5

Chapter 1 Introduction

1.4 Document Structure
In Chapter 2, an overview is given of the foundations of our research, and the related
work. Chapter 3 documents the functionality and the development of the Correlator pro-
totype. The idea of correlation is illustrated, and the steps of analysis and visualization
are explained in detail. A comprehensive description the evaluation experiments and
analysis follows in Chapter 4, especially covering fault injection, before the conclusions
are presented in Chapter 5.

6

Chapter 2

Foundations
As motivated in the introduction, failure diagnosis is an important task in the process
of maintaining large distributed systems. In the worst case, administrators get flooded
by a burst of events. They have to manually sort out the irrelevant ones, analyze the
meaning of the rest, and try to connect them to a reason. Automated methods shall help
to reduce downtimes, and optimize employees’ working time.
Depending on the definition, a failure in multi-user Web environments does not always

mean the outage of a whole system. It can also mean a partially disabled system or its
user interface being unavailable. Maybe the failure affects only a fraction of the users,
so that much time is consumed when localizing the causing component, or the incident
is not recognized at all by the administration. This motivates efforts to quickly detect
possible failures.
Avižienis et al. [2004, p. 13] define these threats to dependability and security:

“A service failure, often abbreviated here to failure, is an event that occurs
when the delivered service deviates from correct service. [. . .] Since a service
is a sequence of the system’s external states, a service failure means that
at least one (or more) external state of the system deviates from the correct
service state. The deviation is called an error. The adjudged or hypothesized
cause of an error is called a fault.”

The following four sections each give an introduction to a technical aspect that the thesis
is built upon. Section 2.5 summarizes the most related work.

2.1 Automatic Failure Diagnosis
Automatic failure diagnosis first of all means the collection of information. Usually,
this is achieved through monitoring, that is, the collection of information from a system
during its runtime. In the next step, the raw data has to be processed to finally present
a human readable report.
For example, Kiciman and Fox [2005]’s “Pinpoint” detects failures in component-based

Internet services by comparing a model of a system’s normal behavior with appearing
changes which indicate a possible failure. Their approach is limited to the top level in the

7

Chapter 2 Foundations

fault error failure
activation propagation causation

fault... ...

Figure 2.1: Error propagation [Avižienis et al., 2004, p. 21].

software stack (being non-intrusive; they do not look into programming details), neither
trying to predict failures before they occur, nor trying to explain them.
The authors list three categories of monitors that are used by Internet service operators:

• Low-level monitors are watching machine and network components, e.g. HTTP
error codes.

• Application-specific monitors catch functional aspects like discounts at an e-
commerce site.

• User-activity monitors compare statistics of pre-defined metrics for user behavior
with historical trends.

Attention must be paid to cascading failures as a source of false positives: Errors can
be propagated through a system by its interactions, thus disguising the origin of the
failure, as depicted in Figure 2.1. On the other hand, faults do not necessarily result in
errors, nor do errors necessarily result in failures, as they may be caught and corrected
before a real problem arises, for example through the use of replication techniques.

Monitors can be attached to different structures:

• The user interface, where little error messages should be displayed in normal op-
eration, may be parsed for keywords. However, these messages often describe
symptoms of a problem instead of its cause – for example, “cannot unlock screen”
is displayed instead of “/tmp is readonly”.

• Likewise, the log files can be searched, assuming that the developers carefully out-
put all problems there. However, according to Kiciman and Fox [2005] the share
of false alarms is relatively high, and hard to filter out.

• Alternatively, special hooks can be applied by maintainers, maybe at critical points
in the architecture, to report anomalies directly.

Rohr et al. [2008b] present “Kieker” as an approach to continuously monitor Java
software systems and to visualize their internal behavior from the monitoring data by
creating (amongst others) sequence diagrams, dependency graphs, and execution trace
models while being said to have very little overhead. The main components shown in the
architecture diagram in Figure 2.2 are the monitoring component Tpmon that collects
and stores monitoring data, and the analysis component Tpan that, by use of its plug-ins,
analyzes the data and produces output documents.
One strategy of failure detection is based on the monitoring of timing behavior, which

is described in the following section.

8

2.2 Timing Behavior Anomalies

<<Component>>
M

M

Software System with

Monitoring Instrumentation

Database
M

M

M

M

M

:Tpan

:TpmonControl

:Tpmon

<<Component>>

<<Component>>

Timing
Diagrams

Markov Chains

Dependency
Graphs

Sequence
Diagrams

:SequenceAnalysis

<<Component>>

:DependencyAnalysis

<<Component>>

:TimingAnalysis

<<Component>>

:ExecutionModelAnalysis

<<Component>>

Figure 2.2: Kieker architecture. Tpmon stores monitoring data, and Tpan with its plug-
ins analyze it [Rohr et al., 2008b].

2.2 Timing Behavior Anomalies

Anomalies in timing behavior become important from the view of the users, if they have
to wait for an answer from their system significantly longer than expected. Even 25 years
ago, [Bailey and Soucy, 1983] observed that “response time directly affects the produc-
tivity of a user and is one of the main criteria by which an interactive communication
system is judged”.
As described by Hoffmann [2006, pg. 240], the typical WWW user gets impatient after

only few seconds, and might mistrust the answer. In case of a Web shop, the user might
soon abort browsing the catalog and proceed to a competitor’s offerings. From the view
of an administrator, such anomalies should be worth some investigation, because they
can indicate a spectrum of problems, from avoidable to really annoying.
Timing behavior anomalies can be an indication for a (temporary) overload of the

system’s capacity. This might be a peak in the number of concurrent user agents, also
known as the Slashdot Effect as examined for example by Adler [1999]: The hit rates of
Web servers are correlated with the announcement times on high volume news Web sites.
Alternatively, the system might be exposed to a distributed denial-of-service attack. On
the other hand, these anomalies can be an indication for persistent faults in the system
design, architecture, or source code, that could probably be removed easily as soon as
they have been localized.
Related work on timing behavior analysis often aims at assessing the performance of

a system. For example, Juse et al. [2003] examine the impact of applying Web Service
interface technology to a tightly coupled application by measuring, among throughput
and latency, the response time. In fact, they notice only a small change of throughput
in their experiments, but significantly higher variations in response time under different
load situations. This motivates response time to be a sensitive indicator for anomalies.
As noted by Kiciman and Fox [2005, p. 14], anomaly detection can be used for the

detection of various types of “bad” behavior – including intrusion detection, code bugs, or
violations of invariants – but only if it can be compared to “assumed-good behaviors”, and
as long as the system is working correctly most of the time. They admit the possibility
of mis-classifying anomalies as “another mode” of the components, in case these fulfill

9

Chapter 2 Foundations

more than one service. That might be a result of their non-intrusive, top-level approach
mentioned in Section 2.1.
Rohr et al. [2008a] mention variations of the workload intensity as a major influ-

ence on response times: “Anomaly detection with constant thresholds might not achieve
optimal results for systems where varying workload intensity occurs that leads to vary-
ing response times.” They contribute a statistical approach, called Workload Intensity
Sensitive Anomaly Detection (WISAD), that uses statistical analysis “to detect devi-
ations between current and historical monitoring data”. To measure response times,
so-called operations, i.e. services provided by components, are instrumented with moni-
toring probes. The anomaly detector relies on a set of training observations, including
workload intensity, to decide whether or not each execution of an operation is an anomaly,
whereas the thresholds dynamically depend on the platform workload intensity.

Overhead through monitoring is an issue when observing response times, because the
collected data about timing behavior does not support precise analysis if the monitoring
itself has a significant influence on the system’s performance.
Other limitations of using time measurements, that are also noticed by our group, are

listed by Yilmaz et al. [2008, pg. 4].

• Imprecision in measurements: The measurement depends on the resolution of the
software/hardware clocks. In distributed systems, we experienced time synchro-
nization as a problem.

• Noise in measurements: False positives as well as false negatives can arise from
undesired activities by the underlying platform. In distributed systems, network
traffic is added.

• Dependency on software/hardware platforms: Results from measurements on one
platform may not be comparable to those on another platform.

Answers to these limitations include the usage of high resolution clocks, the addition
of context information, the usage of average values and probability models, and timing
abstractions, e.g. percentages instead of actual time values.
Another impact on monitoring is the interference with the source code. One possi-

bility to set monitoring points non-intrusively, thus helping to reduce its influence on
performance, is Aspect Oriented Programming.

Aspect-Oriented Programming
The concept of Aspect-Oriented Programming (AOP) was first presented by Kiczales
et al. [1997] based on the belief that traditional object-oriented programming languages
are “ultimately inadequate for many complex systems”, because different aspects of a
system’s behavior “tend to have their own natural form”. With AOP, the aspects may
be developed separately, and then merged to produce executable code, using a tool they
call AspectWeaver.

10

2.3 Event Correlation

Compiler Program Loader

Aspect

Source Code Virtual Machine

Figure 2.3: Load-time weaving is a method provided by AspectJ for Aspect Oriented
Programming [Focke, 2006].

Although AOP has been developed with the thought of letting different languages
collaborate, it can also be used to weave additional functionality into an existing program
with only minimal changes to the original, using the same language. For example, code
can be added at predetermined points, or it can be completely replaced under specific
circumstances.
Java Annotations were introduced with Java 5 as a mechanism to enrich Java code

with meta data that can be evaluated by external programs, for example to generate ad-
ditional code. Focke [2006] lists these methods of weaving that are provided by AspectJ1

(which is an AOP implementation for Java), and that differ in the time when the weav-
ing happens: (1) Compile-time weaving is done by a preprocessor before compilation,
(2) Post-compile (binary) weaving is done by a post-processor after compilation, and (3)
Load-time weaving (see Figure 2.3) is done not until the program is run in the Virtual
Machine. The first two have the disadvantage that the build process of existing appli-
cations has to be changed, and their program code has to be compiled and re-deployed
when changes occur within the aspects.
In our case, Rohr et al. [2008b] use AOP in the variant of load-time weaving to im-

plement the monitoring of timing behavior. More precisely, their tool Tpmon records
the call and return times of Java method invocations. With the annotation techniques
provided by Java, the goal is achieved to keep the monitoring logic separate from the
source code of the software under analysis, and to have little impact on performance.

2.3 Event Correlation
According to Gruschke [1998a], an event correlator first has to reduce the overall number
of events to improve the handling, secondly should indicate a problem’s cause instead of
its symptoms, and thirdly (beyond the scope of this work) it should help to route reports
to the right person. As the author states, such mechanisms cannot prove the correlation
of events, but estimate their connection based on the likelihood of their coincidence, so
maybe only a subset of the possible explanations is found. His approach is classified
as being a technique for event filtering: A large amount of monitored events is to be
reduced to a small amount (if not even a single point) of originating events that evoked
all following ones.

1http://www.eclipse.org/aspectj/

11

http://www.eclipse.org/aspectj/

Chapter 2 Foundations

A consequence of the separation of fault detection methods as described in Section 2.1
– the monitoring on different application levels – is that usually all involved software and
hardware components, as well as different-level failures, are treated separately. This is
an opportunity for event correlation to enhance the structure and relevance of messages
by paying attention to the system as a whole.
In a follow-up paper [Gruschke, 1998b], the author proposes an event correlator which

processes raw management events that are otherwise shown to the administrator. With
the help of a knowledge repository that somehow knows the relations between the events,
it shall filter the messages to enhance the fault localization activities. He describes two
older concepts of designing the knowledge base: Either a human expert has to teach
the correlator through some kind of programming, or a set of specific “cases” is defined
which map input events to their probable cause. The author’s own approach is based on
connecting the correlator to an existing management system, using data already present
in it, to construct a dependency graph of the managed objects. The reasons for doing
this would be a combination of simplicity and the power of straight-forward consideration
through experts looking for “What do they have in common?”
He assumes faults to be forwarded as a basic principle – that is, an event is probably

not sent by the causing component. For example, when a router in a network fails, then
not the device itself, but instead its peers are sending timeout messages. The author
even defines dependency by the possibility to provoke a failure in another object (node
in the dependency graph).
Agarwal et al. [2004] report their approach for root cause analysis to be utilizing

the following combination of concepts: They use dependency information and dynamic
runtime performance characteristics to narrow down the root cause. Omitting some
categories, like failing hardware components, to traditional management systems, they
concentrate on “typical e-business systems” and “non-real-faults”, such as a slowdown.
Likewise, Kiciman and Fox [2005, p. 14] report on other approaches to the problem of

fault localization to “typically rely on either expert systems with human-generated rules
or on the use of dependency models”.

2.4 Distributed Java Web Applications
Java Web applications are an implementation of the Client-Server concept. Like many
years ago in the mainframe era, applications can be stored and managed at a central site
and deployed through the Web as needed. Applications are usually split up into several
parts, each handling a particular set of functions.
A three-tier architecture is common for Web-based applications. The presentation

layer holds the user interface; the business logic, or application layer contains implements
the application logic; and the data service layer consists of persistent data. To complete
the Web site architecture, there are devices like routers, firewalls, and load balancers.
The distribution aspect is usually a method of scalability to higher loads, allowing the

expansion of a service through the use of additional machines, forming a server cluster.

12

2.4 Distributed Java Web Applications

Internet Router

Load

Balancer

Web

Server(s)

Application

Server(s)

Database

Server(s)

Layer 1

"Presentation"

Layer 2

"Application"

Layer 3

"Data"

FW FW FW

Figure 2.4: Three-tier architecture, based on Menascé and Almeida [2001, p. 159].

Client Stub Network Skeleton Server

Figure 2.5: Structure of Remote Message Invocation: Method calls from Client to Server
are routed over the network through automatically generated proxies called
Stub and Skeleton.

In our case, the distribution provides additional possibilities for monitoring, but new
sources for faults may arise from building the interfaces, too.
The servers depicted in Figure 2.4 can be separated machines, or services on the same

machine, or even several machines for each layer, depending on the requirements. Issues
in this context include performance, reliability, security, and maintainability.
Typically, distributed Java Web applications are accessed through HTML Web pages

dynamically generated by Java Servlets2. Servlets are executed within a Servlet container
(e.g. Apache Tomcat) and provide the presentation of the application logic which may
be distributed over a number of application servers.
One possibility of communication between the application components is given by

Remote Method Invocation as described in the next section.

Remote Message Invocation (RMI)
During the preparation of the current work, we decided to use the Java RMI3 package
from Sun to deal with the communication between the components of our distributed ex-
ample application, JPetStore. RMI allows objects on one Java Virtual Machine to invoke
methods of objects in another Java Virtual Machine. This works almost transparent at
client side, with automatically created proxies on both sides (see Figure 2.5). Evolving
from a monolithic application, there are only small changes of the source code required.
The following paragraphs summarize the steps to apply RMI to an existing program.
An interface extending java.rmi.Remote has to be created on the server side for each

class to be provided for remote use, containing their respective public methods. The
2http://java.sun.com/products/servlet/
3http://java.sun.com/javase/technologies/core/basic/rmi/

13

http://java.sun.com/products/servlet/
http://java.sun.com/javase/technologies/core/basic/rmi/

Chapter 2 Foundations

methods must be declared to use a RemoteException formally, although it will never be
used later, because in case of an error, that would be processed on client side.
Each server class must extend java.rmi.server.UnicastRemoteObject, that pro-

vides (among other things) the ability to leave the server waiting for incoming messages.
When instances are created, they have to care about an RMI Registry (e.g. create one),
and they have to announce their names in URL format (of the form //host:port/name).
The server methods are implemented as usual.
The client classes have to obtain references to the server object’s interfaces by calling

java.rmi.Naming.lookup() with the desired server’s URL, whose methods can then be
called normally, especially concerning synchronous control flow. For the case of an error,
e.g. a garbled transmission, java.rmi.RemoteException has to be caught.
In order to be transmitted over RMI, objects have to implement the marker interface

java.io.Serializable – many predefined Java classes already do this. Despite this
comfort, there may evolve problems with object handling, e.g. comparisons using “==”
may not work, or could have “lost update” effects when working with object copies. Such
design flaws cannot be noticed by the compiler, but appear at runtime by throwing an
exception in the best case. This also applies to broken transmissions, which have to be
explicitly restarted.
However, for the experiments in Chapter 4, another implementation based on Web

Services has been used because it works better with our monitoring component.

2.5 Related Work
Similar to our group’s studies, Kiciman and Fox [2005]’s “Pinpoint” uses monitoring to
learn historical reference values, and to detect anomalies in the behavior of an application.
For evaluation, the authors use two versions of the Sun Petstore, a predecessor of the
JPetStore, one of them distributed across a cluster of machines. Neither do they make
use of timing information, nor of the calling dependencies.
The work most related to the approach of this thesis seems to be the one by Agarwal

et al. [2004]. Using the dependency graphs is a main element of their They monitor
response times, but via non-invasive methods, so their reconstructed graphs may have
“imperfections”. For fault localization, they use a clustering algorithm combined with a
ranking logic to sort the suspicious components. They admit a drawback that sounds
very similar to the effect of propagation.
Most recent, Yilmaz et al. [2008] present an approach that concentrates on the mon-

itoring of timing behavior. Their “Time Will Tell” is loaded with time spectra from
passing and failing runs in order to identify potential causes within the failing runs.
Common open source Java applications, instrumented on byte-code level, are used for
evaluation. Although the measurements are collected in the form of a call tree, the do
not make explicit use of the dependencies to refine their diagnosis.

14

Chapter 3

Approach

As mentioned in Sections 2.1 and 2.2, Rohr et al. [2008a,b] present an approach to
recognizing and evaluating anomalies in the timing behavior of Java applications. Their
Kieker with the monitoring component Tpmon provides functionality to monitor Java
software systems at selected points. Tpmon is woven into the application to be monitored
using AOP (Aspect Oriented Programming). Raw timing data is collected at runtime
and stored into a database or file system.
Kieker’s component Tpan and its plug-ins read the monitoring data and analyze it.

There are plug-ins for visualization, that generate sequence diagrams and dependency
graphs, for example. Plug-ins like PAD (Plain Anomaly Detection) orWISAD (Workload
Intensity Sensitive Anomaly Detection) detect anomalies in the timing behavior based
on the comparison of the execution’s response times with historical or calculated normal
values. This way, they assign an anomaly score to each monitored execution that reflects
the degree of its timing to be anomalous – the higher the deviation from what is defined
as normal, the higher the score.
However, the output data of Tpan’s anomaly analysis algorithms does not support

human administrators in performing failure diagnosis very well. Users get raw evaluations
of the timing behavior so far, but this might not help much for quickly identifying possible
causes. There is no aggregation of the large number of anomaly events, that might
be distributed over several application parts, and that are not optimized for human
readability. Furthermore, there is no correlation: The anomaly events are collected
separately, and no connection is drawn between them, thus it would not be recognized if
groups of them belong together, and have the same cause. A prevalent example for this
is the effect of anomaly propagation: A slowdown observed at one component might be
a consequence of faults in other components not directly related to the first. Evaluation
functionality is needed to aggregate the anomaly events, to correlate their meanings, to
provide the results for further automatic analysis, and to clearly present them to human
users.
The goal is to combine the anomaly detection with component dependency information

that is reconstructed from the monitoring data. Similar to speech recognition or other
applications of semantics, somehow abstract input data has to be interpreted, correlated,
and given a meaning to get a kind of understanding of its content. In terms of the
propagation, especially the calling dependencies between the application’s components

15

Chapter 3 Approach

– in the form of “which method invokes which other methods” – seem to provide useful
information for determining a failure’s root cause.
A correlation algorithm is created that automatically determines parts of the system

under analysis (SUA) which are strong indicators to the cause of failure. If the approach
is not able to point exactly to one part of the application architecture, at least it pro-
vides a significant reduction of the search space of possible causes by declaring a large
percentage of software elements as not being the fault with high probability.
The following requirements for monitoring techniques listed by Kiciman and Fox [2005,

p. 2] are relevant for the current approach.

• High accuracy and coverage: Without special training, a broad range of failures
anywhere in the system should be correctly localized.

• Few false-alarms: The rate of false-alarms should be adequately small to not negate
the benefit of fault detection.

• Deployable and maintainable: No special adjustments to the monitored system
should be needed, so that its development or maintenance can easily continue. The
evaluation itself should require little configuration effort.

Like with Gruschke [1998a], the results depend on the completeness of the dependency
graph, which is reconstructed from the monitoring data. If the monitoring instrumen-
tation is too coarse-grained, i.e. only few monitoring points exist, then the evaluation
will be imprecise, in that dependencies are missing, and therefore connections between
the affected components cannot be recognized. If it is woven too fine-grained, i.e. most
methods are instrumented, the amount of data will increase without being an advantage
to the result. To be prepared for all kinds of faults, the full instrumentation of the sys-
tem seems to be necessary: The entry and the exit points of every function or service,
which might potentially contain a problem, is annotated. Usually, only those functions
or services are annotated that are non-trivial, and that the user of the analysis has con-
trol of, but not native operating system calls, for example, or other services that enjoy
very high confidence. In other words, it would not be useful to monitor every simple
getter and setter method other than producing much overhead, but network transport
or algorithmic methods might be good indicators for performance problems.

After a brief overview of the architectural levels of analysis, the following Sections 3.1
and 3.2 present the solution idea and the requirements. Then the most important data
structures are described in Section 3.3, before the steps of processing are explained in de-
tail in Sections 3.4 and 3.5. Finally, Section 3.6 gives an overview about the presentation
of the results of the analysis.

16

3.1 Solution Idea

Architecture
Tpan processes three architectural levels, that form a hierarchy: operations, components,
and deployment contexts.

1. An operation is a service offered by the application. Each time it is invoked, an
execution is created, and logged by Tpmon, if its operation has been instrumented.

2. A component is a group of services, usually sorted by functional relationship.

3. A deployment context relates to the execution environment which hosts the appli-
cation.

In practice, operations are mapped to Java methods, components are Java classes, and
deployment contexts correspond to Java Virtual Machines.

3.1 Solution Idea
The problem has similarities to optimization problems in that an absolutely correct di-
agnosis is desired, yet not mandatory. Getting clues in the right direction is sufficient,
and the procedure need not be deterministic. From this perspective, methods such as ge-
netic algorithms [Goldberg, 1989], neural networks [Haykin, 1999], or swarm intelligence
[Bonabeau et al., 1999] come into mind.
On the other hand, these methods require a certain amount of training, that means a

number of failures as well as belonging faults have to be induced into the components to
have the analysis software learn the relations. This can be classified as a kind of “defect
testing”, whose quality highly depends on the proper selection of test cases and test
data [Sommerville, 2001, p. 449]. Another argument against these methods is that their
ability to efficiently adapt to structural changes (that lead to performance loss, but not
necessarily to failures) is of no use in our approach. Since our analysis should not require
any training, and no adaption to special architectures, but it should instantly (sufficient
monitoring supposed) deliver an adequate result when applied to an “unknown” system,
these methods do not seem to be suitable strategies for the analysis after all.
Instead, the idea is to analyze and aggregate the monitored timing behavior data in

combination with the dependencies on the three architectural levels in a software tool
we call the Correlator. Simple logic rules are applied to estimate whether an anomaly
has been reported correctly, or in turn, whether one might remain undetected as an
effect of error propagation as mentioned in Section 2.3. Ideally, one single element of the
application can be highlighted at the end of this process, denoting the likely cause of the
failure.
An overview of the four main processing steps and their relations is given in Figure 3.1.

They are sketched in the following paragraphs, and explained in detail in Sections 3.4
and 3.5.

17

Chapter 3 Approach

Anomaly

Detector

Correlator

Tpan

Model

Building

Execution

Aggregation

Cause

Estimation

Visualization

Anomaly Graphs

Textual Output

1

2 3

4

Figure 3.1: Overview of the analysis, centered on the correlation activities. Once loaded
and pre-processed by Tpan and an anomaly detector, the Correlator performs
further analysis on the data to determine the cause of failure, and prepares
the results for presentation in text and graph form.

3.1.1 Model building
Once the required data has been gathered and pre-processed by Tpan, the caller–callee
relations of the executions as well as their anomaly score evaluations by an anomaly
detector, are combined into a model of the application under analysis. This graph-like
representation of the application contains both static relations of the elements of the
architectural structure, and anomalies in their dynamic behavior.
In contrast to the list of characteristics by Gruschke [1998b, pg. 4], our dependency

graphs are exactly the other way round.

• The elements have more than two states. Not restricted to faulty or correct, they
contain decimal anomaly scores as well as higher level ratings.

• We assume that the model is complete in terms of functions that are actually used.

• We assume that the model is not dynamic – at least at the current stage of our
research.

• More dependencies, thus more connectivity in the graphs, are supposed to benefit
the results of the analysis.

3.1.2 Aggregation
The anomaly scores of all executions are aggregated by operations in order to get an
anomaly rating for each operation: A single number that represents the raw summarized
timing behavior for an operation. This can be used to get a first graphical impression
of the application under analysis – Figure 3.2 shows an example of this step’s result.
Likewise, for each level in the hierarchy, the ratings of lower levels can be aggregated to

18

3.1 Solution Idea

doGet(HttpServletRequest,HttpServletResponse)

addItemToCart() newOrder()viewItem() viewCategory()

getItem(String)

$

doPost(HttpServletRequest,HttpServletResponse)

insertOrder(Order)

signon()

getProductListByCategory(String)getCategory(String)

Figure 3.2: Example of the first results of the analysis. The system is visualized as a
dependency graph. An anomaly rating is assigned to each operation, based
on the anomaly events on execution level, displayed in pseudo colors: The
darker the red is, the higher are the anomaly ratings.

get high-level ratings. This is suited for an overview of the application as to which parts
are most affected by the anomaly: If a component contains a large number of high-rated
operations, then there is reasonable suspicion that the cause of the failure is located in
this component.

3.1.3 Correlation
Further analysis is needed because these parts where anomalies manifest are not nec-
essarily the causing parts. The dependencies between operations are considered to face
the problem of propagation. For example, if an operation shows anomalous behavior,
then its callers will probably show anomalous behavior as well, although they are not
the cause of the failure.
The idea of correlation is based on the assumption that the effects of timing behavior

anomalies are propagated through the anomaly graph in the bottom-up direction. Under
some circumstances, anomalies mask with the timing behavior of normal executions, so
that their effects disappear in statistical noise. On the other hand, if a faulty operation is
executed in a loop, for example, thus having the timing effects sum up for each invocation,
its anomaly shall become noticeable, not only at the origin, but also at all dependent
services. Ideally, the correlation is able to perform a negation of the propagation effect.
In contrast to aggregation, a certain intelligence is needed, i.e. further assumptions about
typical propagation behavior.

19

Chapter 3 Approach

3.1.4 Visualization
The results of the correlation processing are ordered lists of elements of the application
under analysis, each assigned an estimation whether to be the cause of failure. This can
be written out in text form in files, or on console interface, and illustrated as pseudo-
colored dependency structures.
Pseudo colors are a special case of false colors, and a mechanism to display informa-

tion that originally has no color at all. For example, the temperatures in an infrared
thermography, and the height levels in radar satellite images are represented by different
colors from a part of the visible spectrum.

Since most of the processing effectively deals with an abstract mesh of nodes in the
dependency graph, the level of the monitored system is unimportant from the perspective
of the correlation algorithm. What we call components could be Java classes, or whole
distributed applications. Thus, the precision of failure diagnosis depends on the precision
of the monitoring: If the instrumentation is limited to components, the Correlator is not
able to narrow down the cause to operation level.
A downside in using dependency graphs, as mentioned by Gruschke [1998b], is that

program-specific characteristics, which cannot be mapped to dependencies, cannot be
considered by the correlation. This example is given: “If event A and event B arrive
within thirty seconds, then ignore both.” Since the Correlator to be developed in this
thesis is supposed to be activated on demand – after a failure has occurred – and the
examined monitoring data is from a short time period, this approach will disregard the
chronology of the anomalies. It is assumed that all reported anomalies indicate symptoms
of a single cause, or are at least somehow related to each other. A separation of anomaly
groups and bursts would however become necessary in case of an extension to continuous
operation.

3.2 Requirements
The prototype for an anomaly Correlator that is developed as part of the thesis has to
satisfy the following requirements:

1. Plug-in for Tpan.

The Correlator prototype has to be developed in Java as a plug-in for Tpan to
use existing functionality for the analysis and the preparation of monitoring data.
Input data can be gathered from the file system, or from a database. The plug-in
is controlled through the user interface of Tpan, and provides interfaces to retrieve
raw correlation results.
Existing components in Tpan can create message traces – ordered lists of caller–
callee relations – and anomaly evaluations from monitoring data. These suffice as
input for the Correlator.

20

3.2 Requirements

2. Three levels of aggregation.

All architectural levels that are available from input data – operations, components,
and deployment contexts – are included in the processing, and become part of the
visualization.

3. Construction of dependency graphs.

From the collections of message traces, a hierarchical directed graph is constructed
that represents the calling dependencies between operations, components, and de-
ployment contexts.

4. Calculation of anomaly ratings based on anomaly status and dependencies.

The executions of operations are evaluated by an anomaly detector to judge each
one to be anomalous, or not. Combined with the dependency information, these
ratings are refined to narrow down the location of the cause.

5. Estimation for higher levels to be the cause of failure.

The operations’ anomaly ratings are conducted into cause estimations on compo-
nent level as well as on deployment context level. This is again done based on
simple aggregation of the ratings rather than based on the dependencies.

6. Configuration through properties files.

Since there is a bunch of settings available for the algorithm and the output, as
long as there is no graphical user interface, a properties file seems to be a better
choice than hard-coded values, or a poll on command line interface for each run.

7. Textual output.

The minimum required output of the Correlator is a list of the components, each
assigned a percentage to be the cause of failure, sorted in descending order by this
percentage.

8. Graphical output.

In addition to the textual output from within Tpan, a graphical representation of
the dependency structure is created. The cause estimations are displayed through
colors as already shown in the example in Figure 3.2 on page 19. The main require-
ment for the graphics is clearness: A human viewer shall quickly recognize which
parts of the application under analysis are probably the cause of a failure, so that
further efforts on fault localization can be adjusted accordingly.

21

Chapter 3 Approach

Message

isCall: boolean

*

MessageTrace

id: int

ExecutionTrace

id: int

Execution

Sender Receiver

1 1

1..* 1..*

id: int
rt: long
st: long

11..*

11..*

anonalyScore: double

1
Operation

name: String

1

Component

name: String

1..*

1

DeploymentContext

name: String

1..*

Figure 3.3: Data structures produced by Tpan [Rohr, 2008].

3.3 Data Structures
As described before, and depicted in Figure 3.1, the Correlator is developed as a plug-
in for Tpan. Tpan offers functionality to load and process monitoring data. For further
processing by the plug-ins, it provides message traces. Additionally, an anomaly detector
can be integrated to evaluate the timing behavior of executions, whose results can also
be retrieved by plug-ins. The goal of the Correlator plug-in is to gain more information
from the available data, especially – assuming the existence of a failure – about possible
causes of failure.

3.3.1 Input
Figure 3.3 [Rohr, 2008] shows the data structures that are produced by Tpan, thus being
input data for the Correlator. The starting point is the operation, which represents a
function, method, or procedure – common elements in modern programming languages.
The operations are organized in components and deployment contexts. For timing be-
havior anomaly detection, the interest lies in the execution as denoting the activity of
its operation when it is called during runtime. Besides response time and start time, it
contains a decimal anomaly score that is a measure of its timing behavior. The score
is evaluated by an anomaly detector, and lies in the interval [−1, 1] ∈ R, where a score
of −1 means that the execution has a normal timing behavior, and 1 means that the
detector considers this execution to be extremely anomalous. A dependency graph can
be calculated from the message traces.

3.3.2 Output
The main classes representing the output of the correlator are those specifying the hierar-
chy structure. The hierarchy can be considered to be three-dimensional: One dimension
contains the architectural levels – from executions to deployment contexts – whereas two
dimensions are needed to form the calling dependencies.
The architecture is actually a tree, sketched in Figure 3.4, with the Application as

root and the Executions being the leaves. On the other hand, the dependency structure
is a net, sketched in Figure 3.5, where the (directed) edges represent function calls be-

22

3.3 Data Structures

Deployment Context

Component Component Component ...

Operation Operation Operation Operation Operation ...

Execution Execution Execution Execution Execution Execution Execution Execution Execution Execution Execution ...

Application

...

...

...

Deployment ...

Figure 3.4: Structural hierarchy tree. From Executions to Operations to Components
to Deployment contexts to the Application as a whole.

Operation

Operation
Operation

Operation

Operation

Operation

Figure 3.5: Dependency net on operation level. Circles and joins are allowed in the graph.

23

Chapter 3 Approach

tween the elements. These edges are only allowed between nodes on the same hierarchy
level. The graph may contain circles (loops in the source code, or bottom-up calls) and
joins (different methods call one and the same other method). That way, there visually
exist separate dependency nets on each hierarchy level. But in fact, because the real in-
teraction takes place on the operation level, the connections on the higher levels are only
aggregated through their respective children in the graph. For example, the component-
external connections (those that point to a foreign component) of all operations within
a component are aggregated into inter-component edges.

3.3.3 Structure Classes
In software design, this above-mentioned collection of interconnected graphs can be re-
flected by a set of classes each representing one type of node in the structure as depicted
in Figure 3.6. Each element in the graph representation is linked with its parent, children,
and neighbor elements through object pointers.

Application is the top level class in the hierarchy that is instantiated only once per
runtime. It is therefore not connected with any other object of the Application
class, but instead encapsulates the other hierarchy levels. It provides methods
to build up the structure, to initiate the anomaly evaluation, and to fetch data
for the presentation of the results. This way, it also serves as a connector to the
environment.

StructureElement is the abstract superclass of all classes that are part of the depen-
dency structure. It defines common attributes like the links to parents and children
(on higher or lower levels) as well as incoming and outgoing connections to neighbor
elements (on the same hierarchy level), including the number of connections. It
provides methods to build up the linkage, and helper methods for anomaly evalua-
tion such as counters for various properties, or for creating histograms of anomaly
scores.

The major function of the elements besides forming a structure is their anomaly
state. Like with the execution level’s anomaly score, the states of the higher level
elements are primarily defined through a decimal number we call anomaly rating.
The alternative would be a classification to discrete states – a reduction to only
“good” or “bad” behavior in the extreme – but that would be hard to judge. Fur-
thermore, additional parameters and thresholds would be needed that have to be
specified at first to later analyze their impact in the experiments. Agarwal et al.
[2004, pg. 6] mention: “It is very difficult and error prone for the system admin-
istrator to configure a threshold for a component without extensive benchmarking
experience”.

The StructureElement class implements the Java Comparable interface to allow
an easy sorting of the elements.

24

3.3 Data Structures

o
rg

.t
ru

s
ts

o
ft

.t
p

m
o

n
.l

o
g

A
n

a
ly

s
is

.p
lu

g
in

s
.C

o
rr

e
la

to
rP

lu
g

in

1
..

*
S

tr
u

c
tu

re
D

e
p

lo
y

m
e

n
tC

o
n

te
x

t

−
v
m

n
a

m
e

 :
 S

tr
in

g

S
tr

u
c

tu
re

C
o

m
p

o
n

e
n

t

−
n

a
m

e
 :

 S
tr

in
g

S
tr

u
c

tu
re

O
p

e
ra

ti
o

n

−
o

p
e

ra
ti
o

n
 :

 d
a

ta
m

o
d

e
l:
:O

p
e

ra
ti
o

n
−

a
n

o
m

a
ly

C
o

u
n

tB
u

ff
e

r
:

lo
n

g
−

o
u

tl
ie

rC
o

u
n

tB
u

ff
e

r
:

lo
n

g

S
tr

u
c

tu
re

E
x

e
c

u
ti

o
n

−
e

x
e

c
u

ti
o

n
 :

ti
m

in
g

B
e

h
a

v
io

rA
n

o
m

a
ly

D
e

te
c
ti
o

n

 :
:E

v
a

lu
a

te
d

E
x
e

c
u

ti
o

n

0
..

*
1

0
..

*
1

0
..

*
1

S
tr

u
c

tu
r
e

E
le

m
e

n
t

~
p

a
re

n
t

:
S

tr
u

c
tu

re
E

le
m

e
n

t
~

c
h

ild
re

n
 :

 S
tr

u
c
tu

re
E

le
m

e
n

t
~

in
c
o

m
in

g
 :

 M
a

p
<

S
tr

u
c
tu

re
E

le
m

e
n

t,
 I

n
te

g
e

r>
~

o
u

tg
o

in
g

 :
 M

a
p

<
S

tr
u

c
tu

re
E

le
m

e
n

t,
 I

n
te

g
e

r>
~

in
c
o

m
in

g
R

e
l
:

M
a

p
<

S
tr

u
c
tu

re
E

le
m

e
n

t,
 D

o
u

b
le

>
~

o
u

tg
o

in
g

R
e

l
:

M
a

p
<

S
tr

u
c
tu

re
E

le
m

e
n

t,
 D

o
u

b
le

>
~

a
n

o
m

a
ly

R
a

ti
n

g
 :

 d
o

u
b

le
~

c
a

u
s
e

R
a

ti
n

g
 :

 d
o

u
b

le
~

p
e

rc
e

n
t

:
d

o
u

b
le

~
m

a
x
 :

 b
o

o
le

a
n

~
ro

o
t

:
b

o
o

le
a

n

+
g

e
tN

a
m

e
()

+
g

e
tS

h
o

rt
N

a
m

e
()

~
a

d
d

C
h

ild
()

~
a

d
d

In
c
o

m
in

g
D

e
p

e
n

d
e

n
c
y
()

~
a

d
d

O
u

tg
o

in
g

D
e

p
e

n
d

e
n

c
y
()

~
c
a

lc
u

la
te

R
e

la
ti
v
e

E
d

g
e

W
e

ig
h

ts
()

~
is

L
o

n
e

ly
()

~
g

e
tA

n
o

m
a

ly
C

o
u

n
t(

)
~

g
e

tE
x
e

c
u

ti
o

n
C

o
u

n
t(

)
~

g
e

tO
u

tl
ie

rC
o

u
n

t(
)

~
g

e
tA

n
o

m
a

ly
H

is
to

g
ra

m
()

~
g

e
tI

n
c
o

m
in

g
C

o
n

n
e

c
ti
o

n
C

o
u

n
t(

)
~

g
e

tO
u

tg
o

in
g

C
o

n
n

e
c
ti
o

n
C

o
u

n
t(

)
~

g
e

tT
ru

e
A

n
o

m
a

ly
S

ta
tu

s
()

~
c
h

e
c
k
()

A
p

p
li

c
a

ti
o

n

~
a

d
d

E
x
e

c
u

ti
o

n
()

~
a

d
d

M
e

s
s
a

g
e

()
~

e
v
a

lu
a

te
C

o
m

p
o

n
e

n
ts

()
~

e
v
a

lu
a

te
D

e
p

lo
y
m

e
n

tC
o

n
te

x
ts

()
~

e
v
a

lu
a

te
O

p
e

ra
ti
o

n
s
()

~
in

it
A

lg
o

ri
th

m
S

tr
a

te
g

y
()

~
g

ra
p

h
C

re
a

ti
o

n
P

o
s
tP

ro
c
e

s
s
in

g
()

~
g

e
tE

le
m

e
n

ts
O

rd
e

re
d

D
e

s
c
e

n
d

in
g

()
~

g
e

tC
le

a
rn

e
s
s
O

n
O

p
L

e
v
e

l(
)

~
g

e
tC

le
a

rn
e

s
s
O

n
C

o
m

p
L

e
v
e

l(
)

~
g

e
tC

le
a

rn
e

s
s
O

n
D

C
L

e
v
e

l(
)

~
to

D
o

t(
)

−
n

a
m

e
 :

 S
tr

in
g

−
ro

o
tO

p
e

ra
ti
o

n
 :

 S
tr

u
c
tu

re
O

p
e

ra
ti
o

n
−

m
a

x
O

p
e

ra
ti
o

n
 :

 S
tr

u
c
tu

re
O

p
e

ra
ti
o

n
−

m
a

x
C

o
m

p
o

n
e

n
t

:
S

tr
u

c
tu

re
C

o
m

p
o

n
e

n
t

−
m

a
x
D

C
 :

 S
tr

u
c
tu

re
D

e
p

lo
y
m

e
n

tC
o

n
te

x
t

−
a

lg
o

ri
th

m
 :

 A
lg

o
ri
th

m

1
..

*
1

..
*

1
..

*

1
..

*
1

1
..

*

c
a

lli
n

g
 d

e
p

e
n

d
e

n
c
y

c
a

lli
n

g
 d

e
p

e
n

d
e

n
c
y

c
a

lli
n

g
 d

e
p

e
n

d
e

n
c
y

Figure 3.6: Structural classes of the Correlator. Getters and setters as well as other
trivial methods are omitted.

25

Chapter 3 Approach

StructureDeploymentContext is the highest level “real” structure element that is typ-
ically represented as an object in the resulting graph. It contains components,
and may be linked with neighbor deployment contexts by a uses relation. Its only
private attribute is the name of its virtual machine.

StructureComponent is the intermediate level structure element. Usually, it has a
deployment context as parent, may be linked with neighbor components, and has
operations as children, that are again linked among each other. Its only private
attribute is its name, for example a qualified Java class name.

StructureOperation is the lowest level regular structure element. It contains execu-
tions, and may be linked with neighbor operations. Furthermore, it contains the
“original” Operation from the datamodel package in Tpan that is integrated into
the Correlator model in the first step of processing.

StructureExecution is included in this view for practical reasons. Although it is not
a functional element that has to be designed and written like the other parts
of the application, as being the instance of an operation, it shares many at-
tributes that are useful for anomaly and cause analysis. It contains the “origi-
nal” EvaluatedExecution from the timingBehaviorAnomalyDetection package
in Tpan that is integrated into the Correlator model in the second step of process-
ing. Most importantly, this provides the results of the anomaly detection such as
start and response times, anomaly and outlier status, and the anomaly score – the
foundation of all following analysis. Usually, there is no need to link the executions
with each other, but it might be useful to order them by time.

3.4 Dependency Graph Creation
In preparation of the analysis, a dependency graph is computed and loaded with required
information. This graph is a three-dimensional, hierarchical structure containing all
elements of the software under analysis that are linked among each other corresponding
to their calling dependencies. The operations each contain a set of executions, they are
linked with dependent and depending neighbor operations, and they are clustered into
components and deployment contexts. As mentioned in Section 3.3.1, the input data is a
collection of message traces, whose context can be seen in Figure 3.3 on page 22. These
traces are processed according to the following steps, that are visualized in Figure 3.7.

1. In the Application, for each hierarchy level – operations, components, and de-
ployment contexts – a Map is created to successively hold instances of the struc-
ture elements as soon as they become known. Instances of the original objects –
Operation objects for operations, and the names of components and deployment
contexts – are mapped to the Correlator-internal structure elements.

26

3.4 Dependency Graph Creation

identify sender and

receiver operation

[operation is

already known]

[else]

mutually connect the operation objects

and their ancestors, if necessary

create new

component object

create new

operation object

[else]

[component is

already known]

[else]

[deployment context

is already known]

create new

deployment context object

for each call message:

Figure 3.7: Construction of the dependency graph: The involved operations of each mes-
sage from a message trace as well as their components and deployment con-
texts are created as StructureElements and mutually connected where ap-
propriate. The executions are subsequently added to their operations.

2. For each call message, the operations are identified that send or receive the message,
respectively. The return messages are ignored, because it is assumed that they
provide no new information, but only a “mirror” of the call messages.

3. Each Operation is looked up in the map, and assigned a new StructureOperation
if necessary. Doing this, the related StructureComponent is looked up with its
name, and in turn assigned a new StructureDeploymentContext if necessary.

4. Once all objects are known, they are connected to each other through object as-
signments, again using the bottom-up pattern: First, the dependency connections
are established bidirectionally on operation level. For each pair of operations, if
their parent objects (namely components) are unequal, a connection is established
between these two. And if they are located at different deployment contexts, these
are also linked with each other.

5. Finally (not shown in the figure), a list of EvaluatedExecutions is inte-
grated into the dependency structure by simply encapsulating each one into
a StructureExecution object and mutually connecting these with the related
StructureOperation.

27

Chapter 3 Approach

BA

EDC

GF

anomalous

unsure

normal

Figure 3.8: Example of anomaly propagation. The anomaly in D is propagated to A and
B (that depend on D), but not to C and E (that are neighbors of D), and not
to F and G (that D depends on). The degree of anomaly is represented by
color shades from green to red.

3.5 Analysis

The idea of the correlation approach presented in this section is based on the assumption
that timing behavior anomalies propagate through an application in the backwards direc-
tion of the dependency hierarchy. The effects of this propagation can thus be analyzed
to draw conclusions on the origin of the anomalies, and to assign a high probability to
the component that contains the cause of failure.
For the processing to be clear and manageable, the Correlator does not examine all

available data at once, but instead looks at small groups of adjacent nodes in the de-
pendency graph, from the perspective of one node after another. These configurations
are tested for pre-defined conditions (e.g. the occurrence of a certain anomaly rating in
a certain position) that allow some deduction.
In this context, element X depends on element Y if X uses a service of Y, and thus an

error (in terms of timing behavior anomalies) in Y might be propagated to X.
Figure 3.8 shows an example situation of the expected behavior of anomaly propaga-

tion. It is expected that the majority of the callers of an anomalous element show some
degree of anomalous behavior, too. The neighbor elements – not directly connected to
the originating element – are not directly influenced, as well as elements that the anoma-
lous element itself depends on. In the example, the anomaly in element D is propagated
to the elements A and B that depend on D, while the neighbor elements C and E show
no significant sign of anomalous behavior. Although F and G are directly connected to
D in the dependency hierarchy, so there is the possibility to affect the performance of D,
it is assumed that timing behavior anomalies can only be propagated against the calling
dependencies, thus F and G are not influenced by an anomaly in D.

28

3.5 Analysis

The essential part of the analysis is the application of an algorithm that interprets
these and other configurations to draw conclusions about the cause of failure. The
mathematical basis of its calculations is the rating – a single decimal number in the
range of [−1, 1] ∈ R that reflects the status of each element of the dependency structure
to what extent it is suspected to be the cause of failure. The maximum value of 1
means a significant anomaly, while −1 means perfectly normal behavior, and 0 means
that the classification is ambiguous. This applies to the input anomaly score as well as
to the resulting cause rating which can easily be converted to a percentage as shown in
Equation 3.1 where r is the rating, and p is the resulting percentage.

p(r) = r + 1
2 · 100 (3.1)

As described in Section 3.1, the goal is to get a simplified version of the graph. If
a single cause cannot be found, the anomalies should at least be less scattered, but
concentrated at some regions of the graph to ease further diagnosis.

3.5.1 Preconditions
Although this approach to fault localization is based on anomalies in the timing behavior,
its role is not to care precisely about timing behavior. Likewise, the task is not the
guessing of the circumstances of failures, for example an answer to the question whether
a failure actually happened, or whether there are overlaps of more than one effect. It is
assumed that other tools, or administrators have recognized the scenario, and decided to
initiate the Correlator to help locate the cause of failure, after an anomaly detector has
evaluated the timing behavior. The following conditions have to be fulfilled:

There has been exactly one failure in the observation period. The Correlator still
presents reasonable results if the input data does not contain any real anomalies, or if
they are equally distributed, but this results would have no significance beyond failure
diagnosis. For example, it will not make much sense to put the Correlator on pure
performance analysis.

The failure has a distinct cause. The analysis is aimed to locate one point of failure,
that is one single fault in the application. Although the result might be ambiguous, the
Correlator does not actively try to distinguish separate elements of the application as
possible faults.

The measurements are correct. Minimal effort is taken to doubt the results of the
anomaly detector. It is assumed that the monitoring is accurate, and the anomaly de-
tector has adequately evaluated the meaning and relevance of the timing behavior and
thereby handles aspects like statistical outliers. Therefore, the Correlator does not ex-
amine the raw response or execution times, but instead relies exclusively on the anomaly
score.

29

Chapter 3 Approach

3.5.2 Strategy

The challenge is to effectively reduce the amount of information in a way to not lose any-
thing important. The calculations shall be concise, but they shall not become imprecise.
For example, in theory, every single data set of each execution – including start time,
response time, etc. – could directly influence the calculation of the cause of failure on
deployment context level. In practice however, an iterative process seems to make more
sense.
The first essential simplification is to completely omit the concrete timing information

from the evaluation of the executions. It is assumed that the input data is from a short
time period just before the failure has occurred, thus the start and response times would
not help much, but only complicate things. The interpretation of the anomaly intensity
– what can be concluded if an execution takes significantly more or less time than what
has been defined as “normal” – that results in the anomaly score, is the task of the
anomaly detector.
The anomaly information is evaluated and aggregated separately on each hierarchy

level in a bottom-up way. Doing this, the reduction should not happen too “fast”. For
example, a simple evaluation like “IF value X exceeds threshold Y THEN set rating A to
level B” should be set aside. A trade-off is to include the size of the deviation of a value
from some other value (might be a threshold, or a calculated value) in its evaluation.
Thus, instead of a simple, rule-based decision system, the approach is geared more to
the concept of neural networks: The intensity of signal A changes dependent on the
deviation of input X. This way, in a consistent implementation, the algorithm does not
need any pre-defined thresholds that would be hard to determine, but instead it needs a
set of transformation rules. With these rules, an algorithm examines certain small-scale
configurations of anomalies and dependencies, and draws conclusions from them. The
conclusions are then embodied in a single decimal rating number – the higher the value,
the higher the probability to contain the cause of failure – for each element, and for each
step of processing, that can be used for presentation, or for further analysis.
A straightforward procedure is to analyze the situation from the perspective of each

element in the dependency graph. The elements are defined by their properties, and
their environment, consisting of parent, children, and neighbor elements. All of these
can influence their timing behavior, thus the algorithms should consider them for the
calculation of their rating just as well.
Referring to Figure 3.8 on page 28 for example, from the perspective of A and B,

there is at least one element they depend on that behaves anomalous, so it can be
concluded that A and B themselves would probably not be the cause of failure, because
their anomalies seem to be propagations from D. An evaluation algorithm could therefore
lower the ratings of A and B to reflect their innocence. From the perspective of C, neither
being connected to an anomalous element nor being anomalous itself, no conclusion can
be drawn. Likewise, from the perspective of E and G, no conclusion can be drawn, because
there is only one incoming connection each, namely from the dependent elements B resp.
D. Although these behave anomalous, so it is possible that E resp. G contain the cause,

30

3.5 Analysis

this statement is vague, because from their view, B resp. D could be the cause themselves,
or they could be affected by other elements. From the perspective of F, again there is
one dependent element that behaves anomalous, but there is another that does not, so
it can be concluded that F has an only slightly increased probability to be the cause of
the anomaly in D. However, if C would behave anomalous, too, the situation would be
more clear, and an algorithm could significantly increase the rating of F for containing
the cause, no matter if its own timing behavior seems to be unobtrusive.

3.5.3 Realization
There are two procedures of analysis that have been outlined in Section 3.1.

Aggregation For each element on a specified hierarchy level, the anomaly ratings of all
subordinate elements are evaluated and combined to get a new single rating. The
purpose is to effectively reduce the data to ease follow-up evaluation, yet preserving
most of the meaning of the original data. The aggregation is limited to the local
information from the perspective of the element, that means, the child nodes in
the dependency graph, but not their neighbors, or their position in the structure.
In practice, this is done by using a mean calculation.

Correlation For each element on a specified hierarchy level, another rating value can
be calculated to now include the environment information from the perspective of
the element. Instead of indicating the distribution of the effects, the purpose is to
give an estimation about the cause of failure. The calculation is based on a set of
rules to consider the configurations of anomalies and dependencies as described in
Section 3.5.2. Other available information, such as the mappings to higher-level
structures, might be considered as well. The definition of the environment as well
as the conditions under which a configuration has increasing or decreasing influence
on the rating, and in what extent, is up to the specific implementation.

The combination of aggregation and correlation has similarities to the concept of cellu-
lar automata [Wolfram, 2002], in that (1) a new state is calculated based on the state of
a specified element; (2) the state depends on the states of neighbor elements in a distinct
environment; (3) the structure of elements remains constant during processing; (4) the
calculation is successively executed for all elements; (5) each element has the same rule
for updating.
The processing in the prototype is done in the following four steps:

• The first step is the aggregation on operation level. For each operation, the anomaly
scores of all contained executions are combined into an anomaly rating. An example
distribution of execution anomaly scores within an operation is shown in Figure 3.9.
The result of this step suits as a first overview of anomaly distribution as shown
in Figure 3.2 on page 19 and may suffice as help for simple problems, where the
anomaly is outstanding, and/or an administrator can instantly deduce the cause.

31

Chapter 3 Approach

Number of

executions

Anomaly score

Figure 3.9: Example of a histogram of anomaly scores. The horizontal axis shows the
values of the scores from −1.0 (green) to +1.0 (red) while the vertical axis
shows the relative number of scores.

• Then an algorithm for correlation is applied on operation level. Additional infor-
mation is gathered through the application of pre-defined rules. For each operation,
the local anomaly ratings as well as the neighborhood ratings and structural in-
formations are examined for certain configurations depending on the complexity of
the algorithm to gain a cause rating. Again, this might suffice for some problems.

• For this implementation being a prototype, and because the correlation can be a
very complex task, and its benefit has yet to be shown, it is only executed on oper-
ation level. Therefore, the main purpose of the third and fourth step is aggregation
again, namely on component and on deployment context level, to further help the
administrator in isolating the cause of failure.

The algorithms itself are loaded through a plug-in mechanism and can be substituted.
New variants can be added by extending the abstract Algorithm super class, that is
additionally prepared to be configured through Java Properties. Three implementa-
tions are created in the thesis that differ in complexity, and in their possibilities to be
customized.
A controversial customization seems to be the method of mean calculation. For exam-

ple, if there are very few anomalies in a large number of normal executions, it is difficult
to decide whether they are part of the statistical noise, or whether they are indicators of
the failure. Common methods include the arithmetic mean, the median, and the power
mean. The power mean (see e.g. [Cantrell and Weisstein, 2003]) as shown in Equation 3.2
is also called generalized mean because it is a superset of other mean variants that differ
only through their exponent. The arithmetic mean, for example, is a special case of the
power mean with exponent p = 1. Similarly, the root mean square is equal to the power
mean with exponent p = 2.

Mp(x1, x2, ..., xn) :=
(

1
n

n∑
i=1
xpi

) 1
p

(3.2)

32

3.5 Analysis
C

o
m

p
o
n
e
n
t

L
e
v
e
l

dummy transition

unweighted

arithmetic mean

O
p
e
ra

tio
n

L
e
v
e
l

D
e
p
lo

y
m

e
n
t

C
o
n
te

x
t

L
e
v
e
l

unweighted

arithmetic mean

unweighted

arithmetic mean

Aggregation

Aggregation

Aggregation

Correlation

unweighted

arithmetic mean

unweighted

arithmetic mean

unweighted

arithmetic mean

"pessimistic" correlation,

unweighted arithmetic mean

contrast enhanced, weak weighted

configurable mean, median, or maximum

unweighted configurable

mean, median, or maximum

weighted configurable

mean, median, or maximum

"optimistic" correlation, weighted

configurable mean, median, or maximum

Trivial Simple Advanced

Figure 3.10: Overview of the algorithm variants: There are three ways, differing in com-
plexity, to get from anomalies on execution level to a cause evaluation on
deployment context level.

The main difference to the median is the dealing with outliers within the set of samples.
The concept of the median implies to cut off outliers, while the outliers are always
included in the power mean calculation, depending on the power mean exponent: An
exponent smaller than one decreases their influence on the result, an exponent greater
than one increases the influence, while an exponent equal to one is actually the arithmetic
mean where all samples have equal influence on the result.
Another aspect in the context of mean calculation is the weighting of samples by some

criteria. For example, the number of connections between the nodes in the dependency
graph could be considered as influence on the calculation of the neighborhood anomaly
ratings to reflect the mutual cohesion in relation to other connections. This can be
integrated into the mean calculation by assigning a weight factor to each sample in the
data set.
Both of these aspects, the mean method and the weighting, are implemented, and are

subject of the evaluation in Chapter 4 from page 47.
Figure 3.10 shows an overview of the implementation variants that are explained in

detail in the following paragraphs.

Trivial

The trivial algorithm performs aggregation only. In other words, it does no “real” correla-
tion at all, but only forwards the ratings between the aggregation levels. The aggregation

33

Chapter 3 Approach

is done through an unweighted arithmetic mean calculation on each level as shown in
Equation 3.3, where r is the rating of the currently viewed element, and n is the number
of subordinate rating samples, from which the mean is calculated. Its main purpose is to
have a basis for the evaluation of the efficiency of the other variants, whose results shall
not be worse than this variant’s results.

r := 1
n
·
n∑
i=1
ri (3.3)

Simple

This variant performs a “pessimistic” correlation. That means that only few rules are
used to detect configurations in the anomaly structure that are relatively clear to under-
stand and to implement. Following a “keep it simple” directive, two specific conditions
are tested, and an increase or decrease flag is set, respectively. For example, some addi-
tional information – like the outlier status of executions – is completely ignored, because
their effects are unknown and could be misleading. The cause rating is then derived from
the anomaly rating, according to the flags.
More precisely, the rating is increased if the unweighted arithmetic mean of the

anomaly ratings of the directly connected callers (upwards in the calling dependency
graph) is greater than the anomaly rating of the currently calculated operation plus
a tolerance value. This means that this operation is likely to be the cause of failure,
because the dependent operations show significant anomalies.
The rating is decreased if the maximum of the anomaly ratings of the directly con-

nected callees (downwards in the graph) is greater than the anomaly rating of the current
operation plus tolerance. This means that this operation’s rating is likely to be a prop-
agation from another operation it depends on.
Under all other conditions, as well as in special cases such as singular connections, and

the root operation, the value of the anomaly rating is forwarded unchanged.
In Equation 3.4, a is the local anomaly rating, c is the resulting cause rating, t is the

tolerance, ain is the unweighted arithmetic mean of the anomaly ratings of the caller
operations (incoming connections) according to Equation 3.3, and maxout is the highest
anomaly rating of the called operations (outgoing connections).
The function for increase and decrease is chosen for its simple linear curve staying in

range [−1, 1]. Again, the aggregation is done through an unweighted arithmetic mean
calculation on all three levels.

c :=


a+1

2 , ain > a+ t
a−1

2 , maxout > a+ t
a, else

(3.4)

34

3.5 Analysis

Advanced

Compared to the simple algorithm, this variant has some additional features that do not
imply to produce better results, but extend the possibilities for experimentation. It can
be called “optimistic” in that it relies on further assumptions that are rather speculative
in part. The samples in mean calculations are now weighted by different criteria on
each hierarchy level. The neighborhood – elements on the same level whose ratings are
included in the calculations – is extended to all elements that can be directly or indirectly
reached through the graph, thus adding a distance to the weight factor in the correlation.
Additionally, the following parameters can be configured via Java Properties:

• Independent methods of mean calculation for each of the three aggregation steps,
and for correlation: Median, power mean, or maximum.

• The exponents of the power mean calculation on each of the four steps.

• The method of edge weight calculation in correlation: Absolute (number of execu-
tions), or relative (percentage of executions per connection).

• The relation factor between the influence from caller and callee operations.

• The intensity of the influence of distance from indirect neighbor operations.

While the aggregation and correlation functions work basically the same as in the
trivial and simple variants, the following extensions are implemented:
The aggregation on operation level does not ignore outliers in the execution anomaly

scores, but instead includes them in the calculation with a weight of one tenth related to
the other samples. The aggregation on component level uses the number of executions
of the operations as weights, but weakens the influence through the computation of a
square root. After the mean calculation, the contrast is raised by squaring the rating.
The aggregation on deployment context level remains unweighted, but can be varied
through the Properties.
The calculation of a weighted power mean is shown in Equation 3.5, where ri are the

sample rating values, wi are the related weights, n is the number of samples, and ep is
the power mean exponent. The modified power function pwr shown in Equation 3.6 is
used to retain the sign of the ratings, because the power mean is originally defined for
non-negative values only. The signum function sgn shown in Equation 3.7 extracts the
sign of a number.

r̃(ep) := pwr


n∑
i=1
wi · pwr(ri, ep)

n∑
i=1
wi

,
1
ep

 (3.5)

pwr(a, b) := sgn(a) · |a|b (3.6)

35

Chapter 3 Approach

get record from set of known

operations in given direction [operation is not

known yet]
[else]

[smaller

distance found]

[else]

[operation is neither

starter nor root]

[else]

add record in set

of known operations

update record in set

of known operations

proceed recursive construction

with increased distance

for each child in given direction

Figure 3.11: Construction of the list of distances and weights. The depicted algorithm
is executed recursively for each directly or indirectly connected neighbor
operation.

sgn(x) :=


+1, x > 0
0, x = 0
−1, x < 0

(3.7)

The correlation function queries the highest rated directly connected callee, like in the
simple variant, but additionally includes the mean of directly and indirectly connected
operations, callers (predecessors in the graph) and callees (successors in the graph) re-
spectively, weighted by distance and edge weight (absolute or relative execution count),
whereas the simple algorithm is restricted to a distance of one “hop”. Figure 3.11 shows
the activities to collect the information needed to build up the two tables for each oper-
ation: A recursive function traverses the dependency net (example shown in Figure 3.5
on page 23) upwards and downwards in a tree-like depth-first search, storing the length
of the shortest path to each directly or indirectly connected other operation, and the
number of connections, i.e. the number of executions on that path. It is assumed that a
propagated anomaly “looses power” with increasing distance to its origin, so the sample
weights wi are composed of the edge weight divided by the distance as shown in Equa-
tion 3.8 where ei is the edge weight, di is the related distance, and ed is a configurable
distance intensity constant.

wi := ei
dedi

(3.8)

If a method call is remote – i.e. the involved operations are not within the same deploy-
ment context – then, compared to local calls, it is likely that the timing measurement is
affected by environmental variances (such as network traffic bursts), or that the measure-
ment itself is inaccurate, so that the number of false positives as well as false negatives in

36

3.5 Analysis

the anomaly detection increases. These anomalies may be noticed on higher level exam-
ination, but unlike “real” anomalies, they are assumed to be less helpful with the failure
analysis, because they probably do not point out software faults, but rather show flaws
in the system environment. To take these circumstances into account, the influence of
the remote operation’s anomaly rating on the calculation of the cause rating is reduced
by simply halving the weight w in the mean calculation.
The transcription from the anomaly rating to the cause rating is not an “either-or”

relation with a linear change (like c = a+1
2 in the simple variant), but instead depends on

the difference between the local and (aggregated) neighbor values. In other words, the
influence depends on the deviation between the anomaly rating and a reference value,
plus optional tolerance. The cause rating is defined as the sum of the anomaly rating
plus (or minus) the influence of the caller and callee operations as shown in Equation 3.9,
where c is again the resulting cause rating, and a is the local anomaly rating.

c := a+ influencecallee + influencecaller (3.9)

Figure 3.12 depicts the conditions of an increase or decrease, as is also shown in
Equations 3.10 and 3.11, where ãin and ãout are the weighted means of the anomaly
ratings of all influencing caller and callee operations, respectively,max(aout) is the highest
anomaly rating of the directly connected callee operations, and tol(a) is an arbitrarily
selected tolerance function that reaches zero for the maximum of a = 1.

influencecallee :=


decreasecallee, ãout > a+ tol(a)
increasecallee, max(aout) < a
0, else

(3.10)

influencecaller :=

decreasecaller, ãin < aincreasecaller, ãin ≥ a
(3.11)

tol(a) := 1− a
4 (3.12)

First, if the mean of the callees’ anomaly ratings is relatively high, then the cause
rating of the currently viewed operation is decreased, because the cause is more likely to
be there, not here. Second, if the maximum of the callees’ anomaly ratings is relatively
small, then the cause rating is increased, because the cause is more likely to be located
near the current operation. Third, if the mean of the callers’ anomaly ratings is relatively
small, then the cause rating is decreased, because if the current operation had been the
cause, that mean would probably be greater. Fourth, if the mean of the callers’ anomaly
ratings is relatively great, then the cause rating is increased, because they probably have
a common reason, and that would be the current operation. But if there is only one
directly connected operation, this increase is very small, because the cause might as
well be contained in that other operation. Other configurations cannot be drawn any

37

Chapter 3 Approach

recursively build up list of

edge weights and distances

for each preceding node

for each operation:

[else]

calculate weighted mean

anomaly rating

for predecessors

recursively build up list of

edge weights and distances

for each successive node

calculate weighted mean

anomaly rating

for successors

[local anomaly rating + tolerance <

mean successors’ anomaly rating]

[local anomaly rating > maximum

successors’ anomaly rating]

[else]

decrease local cause rating

depending on the difference

to mean successors’ rating

increase local cause rating

depending on the difference

to max successors’ rating

[else]

[there is more than

one predecessor]

[mean predecessors’ rating

< local anomaly rating]

[else]

increase local cause rating

depending on the difference

to mean predecessors’ rating

decrease local cause rating

depending on the difference

to mean predecessors’ rating

slightly increase local rating

(evaluation unsure)

Figure 3.12: Anomaly correlation on operation level. After the weight-and-distance lists
are build up and the means are calculated, the data is tested for several
configurations that can have influence on the cause rating.

38

3.5 Analysis

conclusions from, or they must be handled by the algorithm in another processing step,
that may be on another hierarchy level, or from another operation’s perspective.
Equations 3.13–3.16 show the detailed actions that happen, where count(ain) is the

number of directly connected caller operations, and relationinOut is the configurable
relation factor between the influence from caller and callee operations

decreasecallee := −inh((1 + a) · relationinOut · (ãout − a)) (3.13)

increasecallee := inh((1− a) · relationinOut · (a−max(aout))) (3.14)

decreasecaller := −inh((1 + a) · (a− ãin)) (3.15)

increasecaller :=


inh((1− a) · (ãin − a) · 0.1), count(ain) = 1
inh((1− a) · (ãin − a)), count(ain) > 1
0, else

(3.16)

If an increase or decrease of the rating is decided, the amount to add to, or subtract
from the rating is determined by the inhibition function that is shown in Equation 3.17.
This is a normalized form of the Michaelis-Menten equation vmax·v

K+v (see e.g. Voet et al.
[2005]) with vmax = 1 and K = 1 that is commonly used in biochemistry to describe the
growth under a limiting factor. It realizes a monotonically increasing curve that grows
approximately linear at v = 0 and asymptotically reaches the capacity K for large values,
thus providing an upper bound (or saturation) at K = 1. Specifically, it reaches 2

3 for
v = 2 which is the maximum that occurs in correlation. The behavior is similar (but
easier to calculate) to the positive branch of the logistic sigmoid function (Equation 3.18)
that is also used in ecology and in neural networks as proposed for example by Mitchell
[1997, pg. 97]. Another (positive branch of a) sigmoid function could be used in the
inhibition’s place with few effort.
Both the inhibition and the logistic sigmoid function are shown in Figure 3.13. In

combination with the limitation factor (1 + a) (that approaches zero for small values in
[−1, 1]) resp. (1 − a) (that approaches zero for large values in [−1, 1]), the inhibition is
used in correlation to produce moderated results that again stay in [−1, 1] ∈ R.

inh(v) := v

1 + v (3.17)

sig(t) := 1
1 + e−t (3.18)

Figure 3.14 displays the results of the correlation under the four main conditions, and
for a selection of parameters, ignoring the relation factor (relationinOut := 1). The set
of curves in the top-left graph shows the condition “increase the rating while the rating
is smaller than the reference value”: The increase of the rating is calculated relatively
high if the difference to the compared mean ãin is large, and lowers sigmoid-like with

39

Chapter 3 Approach

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

v

in
h
(v

)

The inhibition function

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

s
ig

(t
)

The logistic sigmoid function

Figure 3.13: The inhibition and the logistic sigmoid function. Both curves approach a
linear function at zero, and reach one for large values. The asymptotes are
plotted in gray.

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Anomaly Rating

In
c
re

a
s
e

if (rating < mean_in) increase

mean_in =

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Anomaly Rating

D
e

c
re

a
s
e

if (rating > mean_in) decrease

mean_in =

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Anomaly Rating

D
e

c
re

a
s
e

if (rating+tol < mean_out) decrease

mean_out =

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Anomaly Rating

In
c
re

a
s
e

if (rating > max_out) increase

max_out =

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

Figure 3.14: Examples of the increase and decrease functions in advanced correlation.
Under pre-defined conditions, the cause rating is determined based on the
anomaly rating and other factors according to Equations 3.13–3.16.

40

3.6 Results

decreasing difference to not excess the maximum valid rating of 1. Likewise, the curves
in the top-right graph show the decrease of the rating if it is greater than the mean, with
respect to the lower limit of −1.
In contrast, if a decrease is planned while the rating is known to be relatively small

already, the curves become parabolas opening to the bottom, vertically compressed by
the inhibition function. This can be seen in the bottom-left graph, where one minimum
is approached for a small difference between rating and mean, and the other minimum
is approached for a small difference between the rating and its lower limit of −1. Ad-
ditionally, this condition includes a dynamic tolerance value (given through 1−a

4) that
reflects in the white space where no action is taken. Finally, the set of curves in the
bottom-right graph show the equivalent for a rating to be increased that is known to be
relatively large already, so the increase has a minimum where the difference between the
rating and the upper limit of 1 approaches zero.

3.6 Results
The Correlator plug-in provides several possibilities to fetch the results of the processing
– textual and graphical. First, intermediate results and conclusions as well as warnings
and errors are printed to the console interface at runtime. These messages can also
be appended to a log file. The detailedness of the messages can be configured in four
levels via Java Properties. An example of this output is shown in Figure 3.15 for
verbosity level 3 (“info”). Other methods allow to write an ASCII-formatted table,
or a list of components, ordered by their level of suspiciousness, to a PrintStream of
the user’s choice as documented in the corresponding Javadoc comments. For custom
post-processing, three methods are provided that fetch ordered Lists of operations,
components, and deployment contexts, respectively. The Java method names of all the
output functions are included in the class diagram in Figure 3.16 as members of the
CorrelatorPlugin class.

3.6.1 Visualization
As for the graphical output, a representation of the dependency structure, optionally
augmented with anomaly and cause rating details, can be converted to Graphviz dot files
that can be used to create vector- or pixel-based image files. Dot files are simple text files
that contain instructions to build up a directed graph from nodes, edges, and clusters,
that can be highly configured [Gansner et al., 2006]. Instead of absolute positions, only
the relations are specified. The dot program then creates a directed graph from this
that can be written to common formats like PostScript (PS), Portable Network Graphics
(PNG), or Scalable Vector Graphics (SVG). Our application elements’ dependencies can
easily be displayed as a hierarchical box-and-line-diagram, while the anomaly ratings and
cause estimations are represented by colors and textual annotations .
Figure 3.17 shows an example of a graph created by dot. Small variations in the

arrangement of the elements within the dot graphs arise from the Graphviz algorithms

41

Chapter 3 Approach

1 < Running experiment "20080724 -050347 - test"
2 Properties loaded : plugin . correlator . properties
3 Properties loaded : plugin . correlator . presentation . properties
4 Override properties accepted .
5 Debug and log file initialized .
6 Building dependency structure of 40599 message traces ...
7 ... found 5 deployment contexts , 16 components , and 35 operations .
8 Integrating 277514 evaluated executions ...
9 ... found 165242 anomalies (= 60%), and 0 outliers (= 0%).

10 Algorithm initialized : " AlgorithmAdvanced ".
11 Rating anomalies on operation level (34 operations) ...
12 Clearness : 0.39468711123507705
13 ... rated sqlmapdao . ItemSqlMapDao . getItemListByProduct (String ,int ,int) to have the ←↩

highest anomaly rating of 0 ,993.
14 Rating cause on component level (15 components) ...
15 Clearness : 0.5284704309277314
16 ... rated sqlmapdao . ItemSqlMapDao to contain the cause with 8 ,89% probability .
17 Rating cause on deployment context level (4 contexts) ...
18 Clearness : 1.1076300901979153
19 ... rated Virtual Machine ’tier ’ to contain the cause with 29 ,50% probability .
20 ==================
21 Correlator Result :
22 ==================
23 Application : " Experiment 20080724 -050347 - test" -- anomalies correlated by ←↩

" AlgorithmAdvanced "
24 ---------------------------
25 Deployment Context : " Virtual Machine ’tier ’"
26 8 ,89% Component : "com. ibatis . jpetstore . persistence . sqlmapdao . ItemSqlMapDao "
27 [4693/ 8360 | +0 ,382 | +0 ,250] getItem (String)
28 [8985/ 8985 | +0 ,993 | +0 ,634] getItemListByProduct (String ,int ,int)
29 7 ,78% Component : "com. ibatis . jpetstore . service . hessian . server . CatalogService "
30 [4649/11103 | +0 ,366 | +0 ,174] getCategory (String)
31 [3935/ 8985 | +0 ,441 | +0 ,198] getProduct (String)
32 [5766/12219 | +0 ,148 | +0 ,145] getProductListByCategory (String ,int ,int)
33 [8985/ 8985 | +0 ,982 | +0 ,477] getItemListByProduct (String ,int ,int)
34 ... < shortened due to space restrictions >
35 ---------------------------
36 Deployment Context : " Virtual Machine ’scooter ’"
37 6 ,03% Component : "com. ibatis . jpetstore . persistence . sqlmapdao . AccountSqlMapDao "
38 [497/ 1116 | -0 ,272 | -0 ,222] getAccount (String , String)
39 6 ,30% Component : "com. ibatis . jpetstore . service . hessian . server . AccountService "
40 [518/ 1116 | -0 ,202 | -0 ,080] getAccount (String , String)
41 ==================
42 Components sorted by cause rating in descending order :
43 ==================
44 8 ,89% com. ibatis . jpetstore . persistence . sqlmapdao . ItemSqlMapDao
45 7 ,78% com. ibatis . jpetstore . service . hessian . server . CatalogService
46 6 ,91% com. ibatis . jpetstore . persistence . sqlmapdao . ProductSqlMapDao
47 6 ,83% com. ibatis . jpetstore . presentation . OrderBean
48 6 ,71% org. apache . struts . action . ActionServlet
49 ... < shortened due to space restrictions >
50 6 ,03% com. ibatis . jpetstore . persistence . sqlmapdao . AccountSqlMapDao
51 ==================
52 < Checking correlator consistency ... done. Plug -in finished without error .
53 < Creating file /home/nina/ logAnalysis / tempdata / correlator /demo -080724. dot ... done.
54 < Creating file /home/nina/ logAnalysis / tempdata / correlator /demo -080724. dot.ps ... done.
55 < Creating file /home/nina/ logAnalysis / tempdata / correlator /demo -080724. dot.svg ... done.
56 < Creating file /home/nina/ logAnalysis / tempdata / correlator /demo -080724. dot.png ... done.

Figure 3.15: Example of the textual output of the Correlator’s results, to be found on
command line interface, and in log files, for verbosity level 3 (“info”). The
listing has been carefully shortened due to space restrictions.

42

3.6 Results

o
rg

.t
ru

s
ts

o
ft

.t
p

m
o

n
.l
o

g
A

n
a
ly

s
is

.p
lu

g
in

s

o
rg

.t
ru

s
ts

o
ft

.t
p

m
o

n
.l

o
g

A
n

a
ly

s
is

.p
lu

g
in

s
.C

o
rr

e
la

to
rP

lu
g

in

<
<

In
te

rf
a

c
e

>
>

L
o

g
A

n
a

ly
s

is
P

lu
g

in
In

te
rf

a
c

e

+
p

ro
c
e

s
s
M

e
s
s
a

g
e

T
ra

c
e

s
()

+
p

ro
c
e

s
s
M

e
s
s
a

g
e

T
ra

c
e

()

<
<

u
s
e

>
>

A
p

p
li

c
a

ti
o

n

~
a

d
d

E
x
e

c
u

ti
o

n
()

~
a

d
d

M
e

s
s
a

g
e

()
~

e
v
a

lu
a

te
C

o
m

p
o

n
e

n
ts

()
~

e
v
a

lu
a

te
D

e
p

lo
y
m

e
n

tC
o

n
te

x
ts

()
~

e
v
a

lu
a

te
O

p
e

ra
ti
o

n
s
()

~
in

it
A

lg
o

ri
th

m
S

tr
a

te
g

y
()

~
g

ra
p

h
C

re
a

ti
o

n
P

o
s
tP

ro
c
e

s
s
in

g
()

~
g

e
tE

le
m

e
n

ts
O

rd
e

re
d

D
e

s
c
e

n
d

in
g

()
~

g
e

tC
le

a
rn

e
s
s
O

n
O

p
L

e
v
e

l(
)

~
g

e
tC

le
a

rn
e

s
s
O

n
C

o
m

p
L

e
v
e

l(
)

~
g

e
tC

le
a

rn
e

s
s
O

n
D

C
L

e
v
e

l(
)

~
to

D
o

t(
)

−
n

a
m

e
 :

 S
tr

in
g

−
ro

o
tO

p
e

ra
ti
o

n
 :

 S
tr

u
c
tu

re
O

p
e

ra
ti
o

n
−

m
a

x
O

p
e

ra
ti
o

n
 :

 S
tr

u
c
tu

re
O

p
e

ra
ti
o

n
−

m
a

x
C

o
m

p
o

n
e

n
t

:
S

tr
u

c
tu

re
C

o
m

p
o

n
e

n
t

−
m

a
x
D

C
 :

 S
tr

u
c
tu

re
D

e
p

lo
y
m

e
n

tC
o

n
te

x
t

−
a

lg
o

ri
th

m
 :

 A
lg

o
ri
th

m

C
o

rr
e

la
to

rP
lu

g
in

+
p

ro
c
e

s
s
M

e
s
s
a

g
e

T
ra

c
e

s
()

+
p

ro
c
e

s
s
M

e
s
s
a

g
e

T
ra

c
e

()
+

in
te

g
ra

te
E

x
e

c
u

ti
o

n
s
()

+
e

v
a

lu
a

te
A

p
p

lic
a

ti
o

n
()

+
c
h

e
c
k
()

+
c
lo

s
e

L
o

g
F

ile
()

+
g

e
tA

lg
o

ri
th

m
N

a
m

e
()

+
g

e
tO

p
e

ra
ti
o

n
s
O

rd
e

re
d

()
+

g
e

tC
o

m
p

o
n

e
n

ts
O

rd
e

re
d

()
+

g
e

tD
e

p
lo

y
m

e
n

tC
o

n
te

x
ts

O
rd

e
re

d
()

+
p

ri
n

tR
e

s
u

lt
T

a
b

le
()

+
p

ri
n

tC
o

m
p

o
n

e
n

ts
S

o
rt

e
d

B
y
C

a
u

s
e

R
a

ti
n

g
()

+
w

ri
te

D
o

tF
ile

()
+

w
ri
te

G
ra

p
h

ic
s
F

ile
s
()

+
e

x
p

o
rt

G
ra

p
h

ic
F

ro
m

D
o

tF
ile

()
+

e
x
p

o
rt

G
ra

p
h

ic
s
F

ro
m

D
o

tF
ile

()
+

g
e

tR
e

s
u

lt
s
C

S
V

L
in

e
()

−
p

ro
p

s
 :

 P
ro

p
e

rt
ie

s
E

x
te

n
d

e
d

−
o

u
tp

u
tD

ir
 :

 F
ile

D
o

tF
a

c
to

ry

~
c
re

a
te

H
e

a
d

e
r(

)
~

c
re

a
te

N
o

d
e

D
e

fa
u

lt
s
()

~
c
re

a
te

E
d

g
e

D
e

fa
u

lt
s
()

~
c
re

a
te

N
o

d
e

()
~

c
re

a
te

C
lu

s
te

r(
)

~
c
re

a
te

C
o

n
n

e
c
ti
o

n
()

P
re

s
e

n
ta

ti
o

n
D

o
t

~
lo

a
d

P
ro

p
e

rt
ie

s
()

~
c
h

e
c
k
P

ro
p

e
rt

ie
s
()

−
o

p
e

ra
ti
o

n
T

o
D

o
tN

o
d

e
()

−
o

p
e

ra
ti
o

n
C

o
n

n
e

c
ti
o

n
s
T

o
D

o
t(

)
−

c
o

m
p

o
n

e
n

tT
o

D
o

tN
o

d
e

()
−

c
o

m
p

o
n

e
n

tC
o

n
n

e
c
ti
o

n
s
T

o
D

o
t(

)
−

d
e

p
lo

y
m

e
n

tC
o

n
te

x
tT

o
D

o
t(

)
~

a
p

p
lic

a
ti
o

n
T

o
D

o
t(

)

−
p

ro
p

s
 :

 P
ro

p
e

rt
ie

s
E

x
te

n
d

e
d

−
im

a
g

e
D

ir
 :

 F
ile

−
in

c
lu

d
e

C
a

p
ti
o

n
 :

 b
o

o
le

a
n

−
in

c
lu

d
e

E
x
p

la
n

a
ti
o

n
 :

 b
o

o
le

a
n

−
in

c
lu

d
e

D
e

p
lo

y
m

e
n

tC
o

n
te

x
ts

 :
 b

o
o

le
a

n
−

in
c
lu

d
e

C
o

m
p

o
n

e
n

ts
 :

 b
o

o
le

a
n

−
in

c
lu

d
e

O
p

e
ra

ti
o

n
s
 :

 b
o

o
le

a
n

−
in

c
lu

d
e

P
s
e

u
d

o
c
o

lo
rs

 :
 b

o
o

le
a

n
−

in
c
lu

d
e

R
a

ti
n

g
s
 :

 b
o

o
le

a
n

−
in

c
lu

d
e

H
is

to
g

ra
m

s
 :

 b
o

o
le

a
n

−
in

c
lu

d
e

W
e

ig
h

ts
 :

 b
o

o
le

a
n

−
w

e
ig

h
ts

R
e

la
ti
v
e

 :
 b

o
o

le
a

n
−

in
c
lu

d
e

L
e

g
e

n
d

 :
 b

o
o

le
a

n
−

s
tr

e
tc

h
C

o
lo

rs
 :

 b
o

o
le

a
n

−
n

e
u

tr
a

lC
o

lo
r

:
S

tr
in

g
−

g
ra

p
h

R
e

m
o

v
e

P
re

fi
x
 :

 S
tr

in
g

P
re

s
e

n
ta

ti
o

n
T

e
x

t

−
o

p
e

ra
ti
o

n
T

o
S

tr
in

g
()

−
c
o

m
p

o
n

e
n

tT
o

S
tr

in
g

()
−

d
e

p
lo

y
m

e
n

tC
o

n
te

x
tT

o
S

tr
in

g
()

~
a

p
p

lic
a

ti
o

n
T

o
T

e
x
t(

)
~

c
o

m
p

o
n

e
n

ts
O

rd
e

re
d

B
y
C

a
u

s
e

R
a

ti
n

g
()

P
s

e
u

d
o

C
o

lo
r

~
in

it
()

~
g

e
tC

o
lo

r(
)

~
g

e
tH

e
x
C

o
lo

rS
tr

in
g

()
−

in
tC

o
lo

rT
o

H
e

x
()

−
C

O
L

O
R

_
M

IN
 :

 i
n

t
−

C
O

L
O

R
_

M
A

X
 :

 i
n

t
−

C
O

L
O

R
_

D
IF

F
 :

 i
n

t
−

m
in

im
a

 :
 d

o
u

b
le

[]
−

m
a

x
im

a
 :

 d
o

u
b

le
[]

−
d

if
fs

 :
 d

o
u

b
le

[]
−

s
tr

e
tc

h
T

o
F

u
llS

p
e

c
tr

u
m

 :
 b

o
o

le
a

n

<
<

u
s
e

>
>

<
<

u
s
e

>
>

<
<

u
s
e

>
>

<
<

u
s
e

>
>

<
<

u
s
e

>
>

Figure 3.16: Class diagram focused on the presentation classes.

43

Chapter 3 Approach

V
ir
tu

a
l M

a
ch

in
e
 'k

lo
tz

'
[

1
3

1
2

9
4

/2
1

2
4

1
8

 |
 0

,0
2

 |
 2

5
,3

3
%

]

s
e

rv
ic

e
.h

e
s
s
ia

n
.c

lie
n

t.
C

a
ta

lo
g

S
e

rv
ic

e
[

5
1

7
5

4
/9

1
5

3
2

 |
 0

,0
4

8
 |

 6
,8

5
%

]

p
re

s
e

n
ta

ti
o

n
.C

a
ta

lo
g

B
e

a
n

[
1

8
9

7
8

/2
6

5
2

4
 |

 0
,3

1
0

 |
 8

,5
6

%
]

s
e

rv
ic

e
.h

e
s
s
ia

n
.c

lie
n

t.
A

c
c
o

u
n

tS
e

rv
ic

e

p
re

s
e

n
ta

ti
o

n
.A

c
c
o

u
n

tB
e

a
n

[
6

1
6

/1
0

8
6

 |
 -

0
,0

0
5

 |
 6

,5
1

%
]

p
re

s
e

n
ta

ti
o

n
.C

a
rt

B
e

a
n

[
1

1
1

3
/2

1
9

0
 |

 0
,0

5
5

 |
 6

,9
0

%
]

o
rg

.a
p

a
c
h

e
.s

tr
u

ts
.a

c
ti
o

n
.A

c
ti
o

n
S

e
rv

le
t

[
5

6
1

3
4

/8
5

1
4

2
 |

 -
0

,1
0

2
 |

 5
,8

7
%

]

$

d
o
P

o
st

(H
tt
p
S

e
rv

le
tR

e
q
u
e
st

,H
tt
p
S

e
rv

le
tR

e
sp

o
n
se

)
[
1
5
7
5
/3

1
4
3
 |
 -

0
,0

2
6
 |
 -

0
,0

2
6
 |
 2

,7
3
%

]2
0
5
7

d
o
G

e
t(

H
tt
p
S

e
rv

le
tR

e
q
u
e
st

,H
tt
p
S

e
rv

le
tR

e
sp

o
n
se

)
[
2
7
4
7
6
/3

9
4
2
8
 |
 0

,2
3
9
 |
 0

,2
3
9
 |
 3

,4
7
%

]

3
8
4
5
5

p
ro

ce
ss

(H
tt
p
S

e
rv

le
tR

e
q
u
e
st

,H
tt
p
S

e
rv

le
tR

e
sp

o
n
se

)
[
2
7
0
8
3
/4

2
5
7
1
 |
 -

0
,0

3
6
 |
 -

0
,5

1
8
 |
 1

,3
5
%

]

3
1
4
3 3
9
4
2
8

g
e
tI
te

m
L
is

tB
yP

ro
d
u
ct

(S
tr

in
g
,in

t,
in

t)
[
1
1
0
2
8
/1

8
0
9
0
 |
 0

,0
8
3
 |
 0

,0
8
3
 |
 3

,0
4
%

]

1
8
0
9
0

g
e
tP

ro
d
u
ct

(S
tr

in
g
)

[
5
2
2
3
/9

0
4
5
 |
 0

,0
5
7
 |
 0

,0
5
7
 |
 2

,9
6
%

]

9
0
4
5

g
e
tI
te

m
(S

tr
in

g
)

[
5
1
7
4
/8

4
2
5
 |
 0

,1
0
0
 |
 0

,1
0
0
 |
 3

,0
8
%

]

8
4
2
5

g
e
tI
te

m
L
is

tB
yP

ro
d
u
ct

(S
tr

in
g
)

[
1
1
0
8
8
/1

8
0
9
0
 |
 0

,0
8
5
 |
 0

,0
8
5
 |
 3

,0
4
%

]

1
8
0
9
0

g
e
tC

a
te

g
o
ry

(S
tr

in
g
)

[
5
8
3
6
/1

1
1
9
1
 |
 0

,0
9
3
 |
 0

,0
9
3
 |
 3

,0
6
%

]

1
1
1
9
1

g
e
tP

ro
d
u
ct

L
is

tB
yC

a
te

g
o
ry

(S
tr

in
g
,in

t,
in

t)
[
6
3
3
9
/1

2
2
7
7
 |
 -

0
,0

1
5
 |
 -

0
,0

1
5
 |
 2

,7
6
%

]

1
2
2
7
7

is
It
e
m

In
S

to
ck

(S
tr

in
g
)

[
7
5
6
/2

1
3
7
 |
 -

0
,0

0
3
 |
 -

0
,0

0
3
 |
 2

,8
0
%

]

2
1
3
7

g
e
tP

ro
d
u
ct

L
is

tB
yC

a
te

g
o
ry

(S
tr

in
g
)

[
6
3
1
0
/1

2
2
7
7
 |
 -

0
,0

1
5
 |
 -

0
,0

1
5
 |
 2

,7
6
%

]

1
2
2
7
7

vi
e
w

It
e
m

()
[
4
0
9
4
/6

2
8
8
 |
 0

,1
1
2
 |
 0

,1
1
2
 |
 3

,1
2
%

]

6
2
8
8

vi
e
w

C
a
te

g
o
ry

()
[
5
8
3
9
/1

1
1
9
1
 |
 0

,0
3
1
 |
 0

,0
3
1
 |
 2

,8
9
%

]

1
1
1
9
1

1
1
1
9
1

vi
e
w

P
ro

d
u
ct

()
[
9
0
4
5
/9

0
4
5
 |
 0

,7
8
6
 |
 0

,7
8
6
 |
 5

,0
1
%

]

9
0
4
5

1
8
0
9
0

si
g
n
o
n
()

[
6
1
6
/1

0
8
6
 |
 -

0
,0

0
5
 |
 -

0
,0

0
5
 |
 2

,7
9
%

]

1
0
8
6

1
0
8
6

a
d
d
It
e
m

T
o
C

a
rt

()
[
1
1
1
3
/2

1
9
0
 |
 0

,0
5
5
 |
 0

,0
5
5
 |
 2

,9
6
%

]

2
1
3
7

2
1
3
7

1
0
8
6

9
7
3

6
2
8
8

1
1
1
9
1

9
0
4
5

1
0
8
6

2
1
9
0

1
9
4
3

1
9
4
3

Figure 3.17: Example of the graphical result of the Correlator. Due to space restrictions,
some parts of the graph are omitted. There are four components visible in
one of the four deployment context. The percent values, augmented with
colors, represent the probability for the elements to be the cause of failure.

44

3.6 Results

and can not be controlled by Tpan or the Correlator plug-in. The backbone of the
graph is the net of operations. The operations are connected among each other, based
on their calling dependencies, and grouped into components and deployment contexts.
Each element is labeled with a distinct name, and optionally annotated with debugging
information about its executions and the individual ratings. As usual in Tpan, the
“root operation” is represented by the Dollar symbol $ – this is not a real application
element, but denotes the starting point for all execution paths, that may be a human
user, or a workload driver. The connections are annotated with the number or percentage
of method interactions on their respective paths. The ratings are expressed through
colors, shaded from green (normal) over yellow (ambiguous) to red (anomaly). The
highest rating is highlighted by special coloring by default. The percentage values are
accumulated to 100% on each hierarchy level. Although executions are organized in
the internal structure very similarly to the other elements, it is not feasible to visualize
them in the same way. Instead, they are depicted as anomaly histograms as already
shown separately in Figure 3.9 on page 32. Technically, the histograms are independent
graphic files, usually in PNG format, that are linked into the dot code to be included as
background images for graph elements.
All features can be configured in detail via Java Properties. The three hierarchy

levels, the histograms, the rating details, the edge weights, as well as additional graph
elements such as a caption, an explanatory text, and a legend can all be individually
switched on or off. The remaining graph adapts to some changes. For example, if
the operations are hidden, the components are connected with each other, and show a
histogram each. Additional options include the adjustment of font families, colors, and
sizes for different graph elements, as well as histogram dimensions and image types.

3.6.2 Automation

Beyond the ability to be configured through Java Properties, the Correlator plug-in
has two features to allow the automated control of experiment evaluation. This way, the
automated evaluation of a dataset with different parameter sets is supported without
having to restart Tpan, or reload any data.

Parameter Override

The plug-in comes with the Experiment class that manages a set of experiment parame-
ters that are supposed to override those specified in the default Properties files. There
is no separation between Properties for the plug-in, for correlation, and for presenta-
tion. Additionally, in case a fault has intentionally been injected into the application
under analysis – e.g. for evaluating the Correlator itself –, information about the level
and the position of the fault may be specified that is later used to rate the success of the
analysis.

45

Chapter 3 Approach

1 # This is an experiment batch file for the Correlator plug -in.
2 # Layout : experiment name; property =value [; property =value] ...
3

4 20080612 -001; correlatorAlgorithm = AlgorithmSimple ; exportFileTypes ←↩
= ps:svg:png; debugLevel = 3

5 20080612 -002; injectionLevel = comp; injectionElement = ←↩
com. ibatis . jpetstore . presentation . CatalogBean

6 20080612 -003; graphIncludeLegend =0; graphFileName =graph; ←↩
graphStretchPseudocolorsToFullSpectrum =0

7

8 ### <- this is an EOF marker
9

10 20080612 -004; correlatorAlgorithm = AlgorithmAdvanced ; ←↩
operationAggregationPowerMeanExponent = 2.0

Figure 3.18: Example of an experiment batch control file. A set of Properties can be
specified per experiment to override the default Properties.

The Experiments can be created through a distinct CSV file, specifying one experiment
per line. Alternatively, a single Experiment can be specified in an entry in the Tpan
Properties file. Figure 3.18 shows an example of an experiment batch control file. The
lines are processed successively, running an independent correlation analysis each.

Results Table

In addition to the log file, and the dot graph exports, a text file can be written that
contains a summary of the analysis performed on an Experiment group in CSV format.
By default, it contains the experiment name, and clearness ratings for each hierarchy
level. Outside of the plug-in code, a success rating is generated if the real fault’s position
has been specified. Further information can be added easily when needed.

46

Chapter 4

Evaluation

To evaluate the applicability of the approach presented in Chapter 3 in practice, an
explorative case study is performed. By analyzing and interpreting the output of the
Correlator for a series of scenarios, we want to learn about the plausibility of its esti-
mation, and maybe discover possibilities for further improvements in the whole process
from monitoring over anomaly detection to event correlation when applied to distributed
systems. In contrast to a controlled experiment as described by Koziolek [2005, p. 2], the
input data is not strictly under control, but determined by a probabilistic process.
We choose the iBATIS JPetStore1, which is an implementation of the Sun Java Pet

Store Reference Application2, a sample online shopping store, to be the application under
analysis (AUA). It has been used in our working group for similar examinations before,
so its architecture is well known, and workload models as well as monitoring strategies
have already been developed and applied [Focke, 2006; Stöver, 2007; Rohr et al., 2008b].
To match the demand for a distributed Java Web application, the JPetStore has recently
been divided into several parts [Rohr et al., 2008a].
The significance of the correlation function is evaluated by using reasonably realistic

but also randomly generated behavior of sample users. A single fault per scenario is
injected at selected points, that could be e.g. a source code bug, or a hardware miscon-
figuration. Ideally the output exactly pinpoints the cause.

After a short explanation of the goals and metrics in Section 4.1, an overview of the
experiment setup is given in Section 4.2, covering the monitoring, and the workload
generation. Section 4.3 describes the selected methods of fault injection in detail, while
Section 4.4 documents the experiment activities to gain timing data for the following
examinations. In Section 4.5, the analysis of five fault injection scenarios is presented that
are examined with different algorithms developed in the previous chapter, combined with
various settings and parameters. Finally, Section 4.6 gives a summary of the examination
results and an impression of performance of the analysis.

1http://ibatis.apache.org
2http://java.sun.com/developer/releases/petstore/

47

http://ibatis.apache.org
http://java.sun.com/developer/releases/petstore/

Chapter 4 Evaluation

4.1 Goals and Metrics
The main goal of the evaluation is to find out whether the Correlator plug-in developed
in Sections 3.3–3.5 works as desired. It should assign a high cause probability to the
application element where the fault has actually been injected. The plug-in should
also show no erroneous behavior itself, though the tolerance to faulty input data is not
explicitly tested.
The secondary objective is the examination of the algorithm variants and parame-

ters of the analysis. It is expected that the advanced algorithm performs better than
the trivial algorithm. Parameters like mean calculation method, edge weight calcula-
tion method, and distance intensity have to be systematically tested for different fault
injection scenarios whether, and to what extent they affect the quality of the analysis.
The application hierarchy level of the fault injection is relevant in that the result will

be at the same level. For example, if a fault is injected on component level, a meaningful
result on operation level cannot be expected.

In order to evaluate the quality of the analysis, first the clearness is calculated for
each level, based on the rank of the elements, ordered by their rating to be the cause of
failure, and based on the relation between consecutive ranks. Provided a list of cause
ratings, translated to percentages, and sorted in descending order, the clearness function
clear ∈ R+ is given through Equation 4.1: It increases with increasing contrast of the
first value to the other values, and decreases with increasing similarity of the values.

clear(r1,...,n) := r1
n∑
i=2

ri
i

+ 1
(4.1)

For example, provided the ordered ratings vector 〈40, 35, 25〉, the benchmark is given
through clear(〈40, 35, 25〉) = 40

35
2 + 25

3 +1 = 1.49 which is not very clear compared to
clear(〈60, 30, 10〉) = 60

30
2 + 10

3 +1 = 3.10. The results of clear are comparable to each other,
independent of the number of ratings, i.e. the ratings vector length, as can be seen in
clear(〈60, 30, 5, 1, 1, 1, 1, 1〉) = 3.23. Furthermore, the ratings neither need be percent
values, nor need to sum up to 100. Instead, the values can be in any range, since their
relations are calculated only.
The distribution of the clearness may also give an indication of the estimated fault’s

hierarchy level: For instance, if the clearness on component level is significantly higher
than the clearness on operation and deployment context level, then this indicates that
on component level, there is probably one element that is more emphasized compared to
its sibling elements, while on the other levels, the analysis is not that clear.

The indicator for the success of the analysis among different experiments is given through
the quotient of the rating (again translated to percentages) of the element where the fault
has actually been injected, and the highest rating on the appropriate level, as shown in
Equation 4.2 where r∗ ∈ {r1, . . . , rn} is the “true” fault’s element’s rating. Thus, the

48

4.2 Experiment Setup

result of the success function is a decimal in [0, 1], reaching 100% if r∗ is equal to the
highest rating.

success({r1, . . . , rn}) := r∗

max({r1, . . . , rn})
(4.2)

4.2 Experiment Setup
Figure 4.1 shows all elements that contribute to the experiment setup, and their relations
as well as sketches of their respective output.

• In the center is the JPetStore, our application under analysis (AUA), that has been
distributed over four machines plus one machine for the database. With the use
of AOP as described in Section 2.2 on page 9, monitoring points are woven into
the components, and connected to the monitoring tool Tpmon [Rohr et al., 2008b]
that writes monitoring data to the file system of the respective host.

• In contrast to Kiciman and Fox [2005], who explicitly run deterministic workload
to verify their results with MD5 hashes from fault-free runs, we want to expose the
AUA to probabilistic workload that can be generated by Apache JMeter3 with the
extension Markov4JMeter [van Hoorn et al., 2008].

• The fault injection is not a software component, but a set of selected manipulations
that provoke failures of different complexity in the AUA. Scenarios are created,
each containing one fault of a certain kind on a specified architecture level. For
example, there are programming faults on operation level, and hardware faults on
deployment context level.

• Tpan [Rohr et al., 2008b], introduced in Section 2.1 on page 7, analyzes the mon-
itoring data through its plug-ins. The system behavior can be reconstructed in
terms of several graphs and diagrams. The component dependencies are essential
for the further processing.

• PAD [Rohr et al., 2008a] (Plain Anomaly Detector), one of the plug-ins, also reads
the monitoring data, but without considering dependencies, it analyzes the timing
behavior and determines anomalies within.

• The remaining step is for the Correlator plug-in developed in Chapter 3 to combine
the gained information about dependencies and timing behavior anomalies, and to
make an estimation about the cause of each failure, whose quality will be rated in
the experiment to improve the correlation algorithm.

49

Chapter 4 Evaluation

Anomaly

Detector

JMeter with

Markov4JMeter

The components

produce

Events

The (simulated) users

generate

Workload

The monitors

filter

Timing behavior

The anomaly detector

evaluates

Timing anomalies

Correlator

Distributed JPetStore

<<Component>>

Tpmon

F

<<Component>>

F

B

Tpmon

<<Monitor>>

Fault Injection

AM

<<Monitor>>

M

M
M

The correlator

estimates

Anomaly cause

 ID operation trace t in t out

 1 persistence.sqlmapdao.ItemSql... 584748623612 53687674 53693868

 2 service.CatalogService.getIte... 584748623612 53687491 53696624

 3 presentation.CatalogBean.view... 584748623612 53687387 53700835

 4 action.ActionServlet.doGet(ja... 584748623612 53686922 53759274

 5 persistence.sqlmapdao.ItemSql... 213771805198 54989707 54996723

 6 presentation.CatalogBean.view... 213771805198 54989451 54998014

 7 service.CatalogService.getIte... 213771805198 54989556 54997749

 8 action.ActionServlet.doGet(ja... 213771805198 54988974 55046237

 9 service.CatalogService.getPro... 641554484295 56661035 56669601

10 service.CatalogService.getCat... 641554484295 56669784 56673005

11 presentation.CatalogBean.view... 641554484295 56661022 56673139

12 action.ActionServlet.doGet(ja... 641554484295 56660601 56682525

13 action.ActionServlet.doGet(ja... 052204618185 34186232 41680287

14 service.CatalogService.getPro... 200737840841 47054818 47174556

15 service.CatalogService.getCat... 200737840841 47174881 47184450

16 presentation.CatalogBean.view... 200737840841 47054667 47184610

...

Comp VM Start Anomaly

A X 0001 1

B Y 0002 0

C X 0004 1

B Y 0006 0

...

A B C

The fault injection

provokes

Errors

Comp VM Cause

...

A X 33%

B Y 67%

C X 0%

...

A

C

B

X

Y

OrderService 328

RequestProcessor 148530

OrderBean

29055

AccountBean

20719

343

1654

1349

AbstractBean

330

4

The analyzer

computes

Message traces
Tpan

Figure 4.1: Conceptual overview of the experiment setup. The application under analysis
is exposed to simulated workload, and fault injection. Tpmon monitors the
timing behavior, which is then evaluated by Tpan with an anomaly detector,
and the Correlator plug-in.

50

4.2 Experiment Setup

Figure 4.2: iBATIS JPetStore 5 demo application. Screenshot of the catalog view in a
Web browser.

4.2.1 Application under Analysis

The JPetStore is an open source J2EE application that runs in a Servlet Container –
we use Apache Tomcat. As being an example of a common Web shop, its only user
interface is through an HTML browser as shown in the screenshot in Figure 4.2. It
allows to manage a personal account, to browse a catalog of items, to add items to a
virtual shopping cart, and to simulate a purchasing process. The account and catalog
data is persistently stored into a database management system – we use MySQL. The
JPetStore has a classic three-tier architecture: presentation, application, database, as
described in Section 2.4.
In order to get a more realistic scenario, the AUA has been divided into four parts. The

distribution is mainly influenced by the application services that are grouped into four
categories: account, cart, catalog, and order. We analyzed some monitored profiles of
example usage as well as the dependency structure, and decided to deploy the application
to five machines as depicted in Figure 4.3, each running an Apache Tomcat Servlet
container: One for account service and catalog service each, one for cart and order
combined – these three represent the application layer –, one for the database, and
another machine for the presentation layer. A sixth machine contains the controlling
system that hosts the workload generator, and stores the results.

3http://jakarta.apache.org/jmeter/

51

http://jakarta.apache.org/jmeter/

Chapter 4 Evaluation

«execution environment»

Presentation
«execution environment»

Catalog

«device»

Database

«component»

Presentation

«execution environment»

Order

«component»

Order

«component»

Catalog

«execution environment»

Account

«component»

Account

«component»

OrderDatabase

«component»

CatalogDatabase

«component»

AccountDatabase

Figure 4.3: Deployment of the JPetStore components [Rohr et al., 2008a]. Referring to
the first concept shown in Figure 1.3 on page 5, the functionality of the Cart
has been merged into the Order context.

MonitoringRecord

autoid

experimentid

operation

tin

tout

vmidsessionid

traceid

Figure 4.4: Database schema for the monitoring of executions [Rohr et al., 2008b].

4.2.2 Monitoring
The AUA is instrumented with monitoring probes provided by Kieker [Rohr et al., 2008b]
as described in Section 2.2. The start and exit timestamps of a subset of the Java method
executions are recorded. Figure 4.4 shows the database schema for the monitoring data.
The choice of methods is adopted from Rohr et al. [2008a] who “carefully determined” a
subset of 34 operations that are listed in Section A.2. In fact, more than 50 operations
are instrumented, but some of them turn out to be never called during the experiments.

4.2.3 Workload Generation
JMeter is an open source Java tool to execute load tests for functional and performance
evaluation mainly for Web applications. Many concurrent users can be simulated by
simultaneous threads. Individual workload profiles can be configured in detail, and the
functionality can be extended by plug-ins. In the current setup, JMeter simulates a num-
ber of users that browse the JPetStore using HTTP get and post requests. Technically,
JMeter acts as an HTTP user agent from the view of the Web application. It has the
ability to follow links, to complete HTML forms, and to activate specified buttons.
Markov4JMeter [van Hoorn et al., 2008] is a plug-in for JMeter that allows to define

probabilistic usage profiles based on Markov chains. For example, a user behavior could
be designed that, from browsing the catalog, (1) inspects an item with a probability of
40 percent, (2) selects another category with 30 percent, (3) returns to the main menu
with 15 percent, (4) switches to the shopping cart with 10 percent, and (5) leaves the

52

4.2 Experiment Setup

Figure 4.5: Apache JMeter 2.3 with Markov4JMeter 1.0. Screenshot of the state transi-
tion editor.

shop with a probability of 5 percent. The time that a user remains in a certain state can
be configured through a timing function that may also be probabilistic. Additionally,
the number of active concurrent users can be varied over time using another function.
Parts of both JMeter and Markov4JMeter can be seen in the screenshot in Figure 4.5.

Since the whole anomaly detection process is highly experimental and under current
work, care must be taken to select a workload curve that produces reasonable data so that
the analysis gets significant results. For the following experiments, a constant workload
is used that uses up to 15 threads, far less than the overall system capacity of about 80
threads as observed in preparative experiment runs. Two different user profiles are used
concurrently: A “browser” that is mostly browsing the catalog and viewing the products
of the store without purchasing anything, and a “buyer” that actually logs in, adds items
to the shopping cart, and completes a buying process.

53

Chapter 4 Evaluation

4.3 Fault Injection
To put the whole fault localization approach to the test, a set of manipulations is sys-
tematically applied to the AUA that are or that simulate faults on different levels, and
of various character. Since it is obviously impossible to construct and experiment with
all theoretically possible situations, some representatives have to be selected, and the
results will be statistically evaluated. Avižienis et al. [2004, pg. 5] list a comprehen-
sive taxonomy of faults, grouped in development faults, physical faults, and interaction
faults. Our experiments shall cover all of these. The fault injection is focused on software
implementation, because, as Kiciman and Fox [2005, p. 7] state, hardware and low level
operating system faults typically do not affect the application level without being noticed
otherwise. However, one experiment is performed that simulates a broken CPU cooling
system.
These are the requirements for the choice of faults to be injected:

1. There has to be some noticeable effect, thus a failure can be detected, either au-
tomatically or manually. For example, this effect might be bad responsiveness, or
incorrect HTML output, that a user can notice, and report to the administrator.

2. It should be an effect that typically does not spawn a direct administrative message,
as is assumed for hardware outages, or software exceptions.

3. There should be a diversity in the position of the fault in the dependency structure,
because of the assumption that faults propagate from the bottom to the top, against
the direction of the dependencies.

4. All hierarchy levels – operations, components, and deployment contexts – shall be
tested individually.

5. For the nature of the influence on the timing behavior, “realistic” faults shall be
used as well as exact and repeatable values.

6. The timing behavior should be influenced in both directions, either increasing or
decreasing the response times of the executions.

As described by Schwenkenberg [2007, p. 14], software implemented fault injection
can happen by embedding the injector to the target system, or by adding a software
layer between application and the operating system. He also surveys tools that test the
stability of processes by stressing them with random input values, or by intentionally
violating communication protocol specifications. Other approaches base on the injection
of faults directly into the memory used by running processes. Virtualization and sim-
ulation offer further possibilities for fault injection while retaining the integrity of the
testing environment. On the other hand, the author points out the demand of resources
by injection tools, which especially affects statements about timing behavior.
Since we want to influence the AUA in detail, and we monitor timing behavior, we

decided to not use any general-purpose tools for fault injection. Instead, the following
five manipulation variants are manually applied.

54

4.3 Fault Injection

Programming fault Functional effect Effect on response times
Omission of negation symbol Function abortion Decreased, because method

is exited earlier
Wrong method call None Insignificant
Boolean flip None Insignificant
Omission of a method call None Insignificant
Parameter change None Insignificant
Condition flip Exception Insignificant, but changed

calling hierarchy
Loop condition placement Exception under Insignificant

certain condition
Change of method call sequence Action has to be Increased (no explanation

initiated twice given by the author)
Change of loop condition symbol Exception Decreased
If/else flip Exception Decreased
Assignment omission Exception Decreased
Condition inversion HTML output change Insignificant

(item list empty)

Table 4.1: Summary of programming faults manually injected into the JPetStore by
Schwenkenberg [2007] and their effects on functional and timing behavior.

4.3.1 Programming Faults

A large variety of source code manipulations can be injected. Kiciman and Fox [2005,
p. 7] state their fault injection to “include those that a programmer building a system
should expect, might expect, and likely would not expect.” Java exceptions can be
used to emulate a range of faults, because they cover different effects, from hardware
faults to programming issues. However, not all simple programming bugs – like incorrect
assignments, mistaken symbols, or exchanged calls or blocks – result in exceptions, and
thus have to be regarded separately, although not all of these are expected to result in
timing behavior anomalies.
In the experiments performed by Schwenkenberg [2007, p. 69], several fault variants are

selected as being “realistic” programming faults, and their effects are demonstrated for
one exemplary method each. Table 4.1 summarizes the results. The problem is that most
of the modifications that actually cause timing behavior anomalies are also throwing an
exception, which disqualifies them for the current experiments. The only modification
that results in increased response times is not documented adequately. In the light of
this, we decide not to use the specific examples, since they do not meet our requirements
for faults that significantly influence the timing behavior while not directly leading to a
clear error message as would be the case with Java exceptions.
In preparation for the fault injection experiments, to minimize the influence on the

existing experiment cluster, that is also used for other research, a copy of the JPetStore
has been deployed – Section A.3 on page 94 lists the technical activities.

55

Chapter 4 Evaluation

Deployment context: Presentation – Host jpet2 (“klotz”)
Package: com.ibatis.jpetstore.presentation
Class file: CatalogBean.java, line 142.
Method: viewProduct()
Modification: catalogService.getItemListByProduct(String);

is called twice, one shortly after the other.
Deployment context: CatalogService – Host jpet4 (“tier”)
Package: com.ibatis.jpetstore.persistence.sqlmapdao
Class file: ItemSqlMapDao.java, line 47
Method: getItemListByProduct(String,int,int)
Modification: queryForList(String,Object,int,int);

is called twice, one directly after the other.
Deployment context: Presentation – Host jpet2 (“klotz”)
Package: com.ibatis.jpetstore.service.hessian.client
Class file: CatalogService.java, line 66
Method: getItemListByProduct(String,int,int)
Modification: new java.util.ArrayList(0);

is executed instead of
catalogService.getItemListByProduct(String,int,int);

Table 4.2: Source code manipulations successively applied to three points of the JPet-
Store. Double code execution (to increase response times) is performed on
presentation and on application layer. An empty list is returned on presenta-
tion layer to decrease response time.

56

4.3 Fault Injection

V
ir
tu

a
l
M

a
c
h
in

e
 ’
ti
e
r’

s
e

rv
ic

e
.h

e
s
s
ia

n
.s

e
rv

e
r.

C
a

ta
lo

g
S

e
rv

ic
e

p
e

rs
is

te
n

c
e

.s
q

lm
a

p
d

a
o

.P
ro

d
u

c
tS

q
lM

a
p

D
a

o
p

e
rs

is
te

n
c
e

.s
q

lm
a

p
d

a
o

.I
te

m
S

q
lM

a
p

D
a

o

V
ir
tu

a
l
M

a
c
h
in

e
 ’
k
lo

tz
’

p
re

s
e

n
ta

ti
o

n
.C

a
ta

lo
g

B
e

a
n

p
re

s
e

n
ta

ti
o

n
.A

c
c
o

u
n

tB
e

a
n

p
re

s
e

n
ta

ti
o

n
.C

a
rt

B
e

a
n

s
e

rv
ic

e
.h

e
s
s
ia

n
.c

lie
n

t.
C

a
ta

lo
g

S
e

rv
ic

e
s
e

rv
ic

e
.h

e
s
s
ia

n
.c

lie
n

t.
O

rd
e

rS
e

rv
ic

e
s
e

rv
ic

e
.h

e
s
s
ia

n
.c

lie
n

t.
A

c
c
o

u
n

tS
e

rv
ic

e

p
re

s
e

n
ta

ti
o

n
.O

rd
e

rB
e

a
n

o
rg

.a
p

a
c
h

e
.s

tr
u

ts
.a

c
ti
o

n
.A

c
ti
o

n
S

e
rv

le
t

$

d
o

P
o

s
t(

H
tt

p
S

e
rv

le
tR

e
q

u
e

s
t,

H
tt

p
S

e
rv

le
tR

e
s
p

o
n

s
e

)

d
o

G
e

t(
H

tt
p

S
e

rv
le

tR
e

q
u

e
s
t,

H
tt

p
S

e
rv

le
tR

e
s
p

o
n

s
e

)

p
ro

c
e

s
s
(H

tt
p

S
e

rv
le

tR
e

q
u

e
s
t,

H
tt

p
S

e
rv

le
tR

e
s
p

o
n

s
e

)

g
e

tI
te

m
(S

tr
in

g
)

g
e

tI
te

m
(S

tr
in

g
)

g
e

tP
ro

d
u

c
t(

S
tr

in
g

)

g
e

tP
ro

d
u

c
t(

S
tr

in
g

)

is
It

e
m

In
S

to
c
k
(S

tr
in

g
)

g
e

tP
ro

d
u

c
tL

is
tB

y
C

a
te

g
o

ry
(S

tr
in

g
,i
n

t,
in

t)
g

e
tI

te
m

L
is

tB
y
P

ro
d

u
c
t(

S
tr

in
g

,i
n

t,
in

t)

g
e

tI
te

m
L

is
tB

y
P

ro
d

u
c
t(

S
tr

in
g

,i
n

t,
in

t)

g
e

tC
a

te
g

o
ry

(S
tr

in
g

)

v
ie

w
It

e
m

()

g
e

tI
te

m
(S

tr
in

g
)

v
ie

w
P

ro
d

u
c
t(

)

g
e

tP
ro

d
u

c
t(

S
tr

in
g

)
g

e
tI

te
m

L
is

tB
y
P

ro
d

u
c
t(

S
tr

in
g

)

v
ie

w
C

a
te

g
o

ry
()

g
e

tC
a

te
g

o
ry

(S
tr

in
g

)
g

e
tP

ro
d

u
c
tL

is
tB

y
C

a
te

g
o

ry
(S

tr
in

g
)

s
ig

n
o

n
()

g
e

tA
c
c
o

u
n

t(
S

tr
in

g
,S

tr
in

g
)

a
d

d
It

e
m

T
o

C
a

rt
()

is
It

e
m

In
S

to
c
k
(S

tr
in

g
)

g
e

tI
te

m
L

is
tB

y
P

ro
d

u
c
t(

S
tr

in
g

,i
n

t,
in

t)
g

e
tP

ro
d

u
c
tL

is
tB

y
C

a
te

g
o

ry
(S

tr
in

g
,i
n

t,
in

t)

in
s
e

rt
O

rd
e

r(
O

rd
e

r)

n
e

w
O

rd
e

r(
)

n
e

w
O

rd
e

rF
o

rm
()

Figure 4.6: Dependency graph of the JPetStore (Part 1), automatically created by the
Correlator plug-in. Due to space restrictions, the deployment contexts for
AccountService and OrderService are omitted. Three operations are col-
ored to mark the positions for the injection of programming faults.

57

Chapter 4 Evaluation

Three source code manipulations that are detailed in Table 4.2 and depicted in Figure 4.6
are selected to emulate programming faults. They are successively applied in an own
experiment each.

• Two manipulations are supposed to increase the response times by executing some
non-trivial method twice. This is probably not noticed by a user. They differ in
position not only in the application’s architecture level, but also in the implemen-
tation: One manipulation is to execute a whole method (a one-liner) twice, the
other doubles only one line of the enclosing method.

• The third manipulation aims at a decrease of the response times by instantly re-
turning an empty list of items instead of fetching them from the database. This
can be clearly recognized by a user who lists any of the product’s items. While the
HTML code is still correct in this point, the lists are all empty, as if no items were
available at all.

These might not be typical representatives for programming faults, but (1) the JPet-
Store does not have much “interesting” code (much of the functionality is handled by the
underlying iBATIS framework), (2) complex code manipulations to test the fault detec-
tion quality would be out of scope of this work, and (3) at least the listed modifications
are non-trivial to the extent that none of them is detected by FindBugs4 [Ayewah et al.,
2007], an open source static analysis tool for Java programs, although it detects other
potential bugs in the distributed JPetStore, even from the performance area.
This choice of faults fulfills the points 1, 2, 3, and 6 of the requirements listed at the

beginning of Section 4.3. Due to the nature of programming faults, their location can be
tracked down on operation level (point 4), a suitable monitoring assumed.

4.3.2 Database Connection Slowdown
To test the Correlator’s capability of localizing faults at the bottom of the calling depen-
dency structure, namely at the connection to the database, manipulations are applied at
two classes that are closest to the SQL layer provided by iBATIS. In their experiments,
Agarwal et al. [2004] simulate higher response times by using a special tool that period-
ically locks database tables. Since the complexity of such action is out of scope of the
current work, as well as the setup of a high load network, we simulate a slow database
connection by adding some sleep(long) commands to the Java code. Table 4.3 and
Figure 4.7 show the details of the modifications. Compared to the injection of program-
ming faults, concrete values for timing misbehavior are used. Being about three times
the typical response times of these methods that are about 3 milliseconds, a sleep of 10
milliseconds is supposed to have a significant influence that is detected with high proba-
bility. To match the demand for a fault on component level, one experiment is performed
with a slowdown in persistence.sqlmapdao.ItemSqlMapDao, which turns out to be the

4http://findbugs.sourceforge.net/

58

http://findbugs.sourceforge.net/

4.3 Fault Injection

Deployment context: AccountService – Host jpet3 (“scooter”)
Package: com.ibatis.jpetstore.persistence
Class file: AccountSqlMapDao.java, line 24.
Method: getAccount(String,String)
Modification: Thread.sleep(10);

is added before the method returns.
Deployment context: CatalogService – Host jpet4 (“tier”)
Package: com.ibatis.jpetstore.persistence.sqlmapdao
Class file: ItemSqlMapDao.java, lines 47 and 55
Method: getItemListByProduct(String,int,int) and

getItem(String)
Modification: Thread.sleep(10);

is added each before the methods return.

Table 4.3: Source code changes successively applied to the JPetStore to each simulate
a slowdown of the database connection. A call to Thread.sleep(long) is
performed to let the execution wait the specified number of milliseconds.

Virtual Machine ’klotz’

presentation.AccountBean

service.hessian.client.OrderService service.hessian.client.AccountService

org.apache.struts.action.ActionServlet

Virtual Machine ’scooter’

service.hessian.server.AccountService

persistence.sqlmapdao.AccountSqlMapDao

Virtual Machine ’puck’

persistence.sqlmapdao.OrderSqlMapDao

service.hessian.server.OrderService

$doPost(HttpServletRequest,HttpServletResponse)

doGet(HttpServletRequest,HttpServletResponse)

process(HttpServletRequest,HttpServletResponse)

signon()

getAccount(String,String)insertOrder(Order)

insertOrder(Order) getAccount(String,String)

insertOrder(Order)getNextId(String) getAccount(String,String)

Figure 4.7: Dependency graph of the JPetStore (Part 2). Due to space restrictions, some
parts are omitted. One operation is colored to mark the position for one of
two injections of a database connection slowdown.

59

Chapter 4 Evaluation

1 klotz :~# hdparm -X udma5 /dev/hda
2 /dev/hda:
3 setting xfermode to 69 (UltraDMA mode5)
4 klotz :~# hdparm -tT /dev/hda
5 /dev/hda:
6 Timing cached reads: 716 MB in 2.00 seconds = 357.73 MB/sec
7 Timing buffered disk reads: 172 MB in 3.02 seconds = 56.94 MB/sec
8 klotz :~# hdparm -X mdma1 /dev/hda
9 /dev/hda:

10 setting xfermode to 33 (multiword DMA mode1)
11 klotz :~# hdparm -tT /dev/hda
12 /dev/hda:
13 Timing cached reads: 704 MB in 2.00 seconds = 352.03 MB/sec
14 Timing buffered disk reads: 32 MB in 3.17 seconds = 10.08 MB/sec
15 klotz :~#

Figure 4.8: Manipulation of the hard disk transfer mode with hdparm. First the mode
is set to Ultra DMA 5 where the device delivers 57 MB per second. Then
the mode is reduced to Multiword DMA 1 where the transfer rate is cut to
effectively 10 MB per second.

only component containing more than one operation that accesses a database, and that
is instrumented as well as actually called in the experiments.

4.3.3 Hard Disk Misconfiguration

With hard disk drives, a broken wire would cause much trouble on operating system
level, so that the origin can be quickly localized. A badly configured or deactivated
DMA mode however would probably not produce any erroneous output, but slow down
the I/O transfer rate and (depending on the transfer mode) may increase the CPU load.
Affecting a whole machine, this fulfills the demand for a fault on deployment context
level.
As demonstrated in Figure 4.8 on the host jpet2 (“klotz”), a call of hdparm -X mdma1

/dev/hda (requiring super-user privileges) reduces the hard disk transfer mode from Ul-
tra DMA 5 to Multiword DMA 1. As a result, the buffered disk read performance drops
significantly from about 57 MB/sec (udma5) to 10 MB/sec, although the ATA-2 stan-
dard allows 13.3 MB/s according to Kozierok [2001]. Since slower modes cause system
instability on klotz’s disk drive (Maxtor 6Y080L0), and the PIO mode in particular (that
is known to have a big impact on overall system performance) cannot be set, the CPU
is even less used than normal. Precisely, the CPU load during disk access drops from
about 7% to 2%.
The hosts jpet3 to jpet5 – “scooter”, “tier”, and “puck” – all have a slower disk drive

of the same type (WDC WD800AB-00CBA0) that drop from about 40 MB/sec (udma5)
to 10 MB/sec (mdma1). The database host jpet5 (“sam”) has a similar drive (WDC

60

4.3 Fault Injection

WD800JD-75JNC0) that performs at about 55 MB/sec by default, but gives I/O errors
when accessed with hdparm, so this drive is resigned from the experiments.

4.3.4 High System Load
To extend the evaluation beyond the foregoing “simple” software faults with a distinct
cause, this scenario allows to study the behavior of the distributed JPetStore when the
respective machines are exposed to high system load. In reality, this could be evidence
e.g. for a misconfiguration of the operating system, a resource consuming fault in another
application, or malicious usage.
Like with Rohr et al. [2008a], resource intensive processes are executed on operating

system level to increase overall system load. These processes stress the CPU, the main
memory, and the hard disk drive, classifying this manipulation to deployment context
level. Instead of changing some part of the application or the machines for the whole
experiment time, this “anomaly injection” can be switched spontaneously during runtime.
Besides start time and duration, the host name can be configured as well as one of five
levels of “severity”, each providing a set of activities with a different influence on the
overall performance. To observe the effect of the load on the system’s resources, the CPU
and memory consumption are separately monitored using Sysstat 8.0.4, a collection of
performance monitoring tools for Linux by Godard [2008].
Preparation experiments indicate that an adequate challenge for the Correlator plug-in

is provided not until severity level 5. The influence of lower levels on timing behavior is
noticeable, but it tends to disappear in statistical noise.

4.3.5 CPU Throttling
With active CPU cooling, it can be assumed that the fan rotation speed is monitored, or
even logged in a business environment. Thus, a detaching of the connector will lead to
an entry in the log, and perhaps a warning message is instantly sent to an administrator.
The same applies to network connections, firewall misconfigurations, or other connections
in hardware: The adjacent components will quickly perceive and classify the failure.
On the other hand, a breakage at the retention module of the CPU heat sink will

probably not induce an instant warning message. Depending on the configuration and
system load, the temperature will rise slowly. At certain thresholds, the CPU is throt-
tled, i.e. idle cycles are added. Before the device is eventually switched off to avoid
damage, the decreasing performance capacity should have a significant influence on the
system’s timing behavior. Like the disk drive misconfiguration, this fault has an impact
on deployment context level.
This experiment is inspired by a famous on-line video by Tom’s Hardware Team [2001]

where the removal of a CPU cooler during a 3D game lets the speed (in frames per
second) fall off, but throttling via the mainboard prevents overheating of the CPU, and
by personal experience with a broken retention module that caused the system to become
unstable.

61

Chapter 4 Evaluation

CPU throttling can also be activated by software via ACPI interface to save power
independent of frequency scaling as documented e.g. by Brodowski and Henschel [2002,
2004] and Torres [2005]. To not risk a damage on our testing environment, which is
needed for further studies, we decide to keep the CPU cooler intact, and instead use the
software throttling method to simulate a broken cooling system.
Since our testing environment (based on an Intel Pentium 4 “Willamette”) does not

support the direct access through the acpi-cpufreq kernel module, we load the mod-
ule p4-clockmod and install the package cpufrequtils that allows to activate certain
performance levels through “governors”, or to select specific clock frequencies which is
well explained e.g. by ArchWiki [2008]. For the first Pentium 4 generation, the frequency
change command by the usermode software is converted into one of eight throttling
modes by the CPU driver. According to Intel Corporation [2008, chap. 13.5], instead
of using the STPCLK pin, or the HLT instruction, or changing the clock frequency, the
throttling implementation of the P4 modulates the clock duty cycle of the CPU.
After the results of the system load experiments turn out to be discouraging, and a

similar behavior could be expected for throttling, the Account context on the host jpet3
(“scooter”) is chosen for this manipulation only. Precisely, the CPU is throttled from
1600 MHz default to 800 MHz, resulting in a duty cycle of 50%.

4.4 Experiments
Preparation experiments show that repeated experiments under the same conditions
produce very similar results. Thus, no effort is made to average the raw measured
values, because a method for doing this would have to be developed yet. Instead, the
experiments are run three times each, and the results are visually compared. In case of
a significant difference within the triplet, the experiment is repeated.
Table 4.4 shows a summary of the fault injection scenarios. Out of five manipulation

variants, 14 scenarios are defined. With three executions each, this results in a total of
42 experiments. Additionally, to get “historical” timing behavior that is assumed to be
free of anomalies, thus to make a basis for the training of the anomaly detector, three
experiments are run with a fault-free scenario.
The duration of the measurements is exactly 20 minutes each, as configured via a

JMeter script. Including reboots of the machines, a warm-up phase, and the automatic
post-processing, the experiments have a duration of about 25 minutes per run. Thus,
the total experiment time reaches about 19 hours for the 45 runs.

4.4.1 Activities
Once the environment is set up, the main experiment steps are:

1. Activation and configuration of the respective faults for each experiment run.

2. Re-deployment of the distributed JPetStore to the machines after faults have been
injected into, or removed from the source code.

62

4.4 Experiments

Manipulation Quantity Position
Programming Faults 3 presentation.CatalogBean
(Operation Level) service.hessian.client.CatalogService

persistence.sqlmapdao.ItemSqlMapDao
DB Conn. Slowdown 2 persistence.AccountSqlMapDao
(Component Level) persistence.sqlmapdao.ItemSqlMapDap
HDD Misconfiguration 4 Presentation
(Depl. Context. Level) Catalog

Order
Account

High System Load 4 Presentation
Account
Catalog
Order

CPU Throttling 1 Account

Table 4.4: Summary of the fault injection scenarios. 14 scenarios are defined out of five
manipulation variants.

3. On the controlling host, the experiments are executed in a shell script that calls
an Ant script in a loop. Debug messages are appended to a log file.

4. The Ant script first resets the four JPetStore machines. They are rebooted, the
Servlet containers are started, and a mechanism for time synchronization is initial-
ized.

5. The main routine then runs a short warm-up workload on the distributed system,
and the monitoring for the response times and the hardware is enabled.

6. JMeter executes the 20 minutes workload. The test plan is identical for all runs,
varied only through the probability functions.

7. The controlling host fetches the results and generates some reports.

8. Depending on the fault variant, the fault injection has to be manually reset.

Figure A.1 on page 92 provides a more thorough diagram of all activities around the
experiments.

4.4.2 Results
45 datasets have been collected that take up 4.3 GiB of disk space. Each experiment
provides about 370,000 executions, making up for more than 16 million executions in
total. No inconsistencies within the triplets have been noticed, so the first result of each
experiment triplet is chosen for evaluation. Thus, more than 5 million executions are to
be evaluated.

63

Chapter 4 Evaluation

0
1

0
2

0
3

0
4

0

0 200 400 600 800 1000 1200

7
6

7
8

8
0

8
2

Experiment Time (Seconds)

C
P

U
 L

o
a

d
 (

P
e

rc
e

n
t)

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

 o
f

5
0

4
 M

B

Figure 4.9: Example of a Sysstat plot during an experiment run. CPU and Memory
consumption are plotted against experiment time. This example shows jpet4
(“tier”) during a fault-less run.

0 5 10 15 20

6
8

1
0

1
2

1
4

1
6

Scatter Plot of Response Times (viewItem)

Experiment time (minutes)

N=8135

R
e

s
p

o
n

s
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Local regression

Figure 4.10: Example of a response time plot during an experiment run. 8135 response
times have been collected from the Web server logs for the service viewItem.

The Sysstat plots automatically created after each experiment run confirm that the
system’s capacity is not reached. None of the curves get near the limit of the respective
resource. Figure 4.9 shows the resource usage of jpet4 (“tier”, hosting the Catalog
context), whose CPU is the resource with the highest load, matching the observation of
Rohr et al. [2008a] who identify this CPU as the “bottleneck resource”.
The response time plots show irregularities for some methods at the beginning of each

run – Figure 4.10 depicts a typical representative where the timing behavior during the
first few minutes differs from that during the rest of the plot. Apparently, the dedicated
warm-up phase of 35 seconds is too short. To keep this from affecting the evaluation,
we ignore the first 5 minutes of each experiment run, considering them as warm-up, too,
thus reducing the evaluated timespan to 15 minutes per experiment.
Another observation is that, regardless of the injection variant and position, the

anomaly detector always classifies a considerable fraction of the executions as behav-
ing anomalous. This is reflected in red peaks in the anomaly score histograms as can
be seen in Figure 4.11. While there are some anomalies in every element, this effect is

64

4.4 Experiments

�

��������	�
���
��������
������������������������������ �!

�����

��������	�
���
����
��
������"��"��������������"��� �!

�����

��������	�
���
��#
���
��
��"�����"����������������� �!

��	�

��������	�
���
��$�
��
����"����""���������������� �!

		�

Figure 4.11: Example of the result of a simple anomaly correlation. Although the fault
has been injected in “puck”, that clearly shows a red peak, and a propagation
to “klotz” can be assumed, the anomalies detected in “tier” are the strongest.

particularly manifested within the Catalog deployment context hosted on jpet4 (“tier”).
Consequently, a fault’s impact has to be quite strong to outperform the permanent
anomaly at the Catalog context.
Apart from that, the dependency graphs of the five scenarios, simply aggregated using

the “trivial” algorithm with default parameters, show different results. Table 4.5 gives
an overview.

1. The impact of the programming faults is clearly visible. The scatter plots show
larger response times that are noticed by the anomaly detector, thus the histograms
created by the Correlator plug-in show a “red shift”. However, the fault localization
is not perfect in this stage: In some cases, the known-faulty element is deep red,
but other elements are flagged as being possible causes.

2. The results for the database connection slowdown are even more clear. The el-
ements are almost correctly flagged, and a strong effect of propagation can be
noticed.

3. Although not unexpected, the hard disk experiments are rather disappointing.
Regardless of where the fault injection happened, the cause is always classified to
be within “tier”, hosting the Catalog. Apparently, the hard disk is a resource that
is not much used by the distributed JPetStore.

4. Although the impact of the high system load on CPU usage is clear on all four
machines as can be seen in Figure 4.12 for jpet3, the effect on response times is
nonuniform. While the Account context seems to be sensitive to system load, the

65

Chapter 4 Evaluation

Manipulation Result
Programming fault 1 – Double code Clearly visible, no propagation, not perfect.
Programming fault 2 – Double code Perfectly visible, nice propagation.
Programming fault 3 – Empty list Clearly visible, some propagation, not perfect.
DB conn. slowdown 1 – Account Clearly visible, some propagation, not perfect.
DB conn. slowdown 2 – Catalog Clearly visible, much propagation, nearly perfect.
HDD misconfig. 1 – Presentation Completely wrong.
HDD misconfig. 2 – Account Completely wrong.
HDD misconfig. 3 – Catalog Insignificant.
HDD misconfig. 4 – Order Completely wrong.
High system load 1 – Presentation Completely wrong.
High system load 2 – Account Clearly visible.
High system load 3 – Catalog Insignificant.
High system load 4 – Order Completely wrong.
CPU throttling – Account All too clear.

Table 4.5: Summary of the fault injection results. Some scenarios have to be taken out of
the analysis, because in the Catalog context, in many cases an accumulation
of anomalies is found that disguises the real cause of failure.

0
2

0
4

0
6

0
8

0

0 200 400 600 800 1000 1200

5
8

6
0

6
2

6
4

Experiment Time (Seconds)

C
P

U
 L

o
a

d
 (

P
e

rc
e

n
t)

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

 o
f

1
0

1
2

 M
B

Figure 4.12: Sysstat plot showing the impact of system load on jpet3 “scooter”: CPU
and memory usage are increased during a timespan of 5 minutes.

66

4.5 Analysis

Order context is not far behind, and the Catalog context is out of the game (as
noticed above), the Presentation context shows very little reaction.

5. The throttling of the CPU of jpet3 is clearly visible in the Sysstat diagrams: The
CPU load is doubled from about 2% to 4%. Although this is still far away from
the system’s capacity, and an influence on the timing behavior is not necessarily
to be expected, there is a definite impact in that the anomaly detector evaluates
every single execution in the affected deployment context as behaving anomalous.

The three injection variants on deployment context level have the same problem: Either
the injection’s effects are so strong that the result is undoubtful, or they are so weak
that they are easily hidden by other (false) anomalies. In both cases, further analysis
does not seem to make much sense, thus the following examinations focus on operation
level and component level.

4.5 Analysis
To evaluate the abilities of the Correlator, a series of seven examinations is performed
with varying settings and parameters. As a basis, those values are used for the parameters
that have been estimated during development. They are varied independently to each
find a value that produces the best result. Then, the optimized values are applied in
combination, and the results compared with those from the beginning of the analysis.
Finally, the performance of the algorithms is evaluated in a cross-check examination with
data that the parameters have not been trained for.
The formulas for clearness and success presented at the beginning of this chapter are

used to compare the results. Additionally, the augmented dependency graphs are visually
compared and checked for irregularities and special characteristics.
The “historical” data that is assumed to be fault-free is used to train the anomaly de-

tector. The training data is written to a file that is later read for all further examinations.
Since WISAD is still under development, and we use constant workload (while WISAD’s
focus is to work with varying workload intensity), we decide to use its predecessor PAD
(Plain Anomaly Detection) for the analysis.

4.5.1 Experiment Selection
Two representative scenarios are selected out of the data that was collected in the 42 ex-
periments. One that looks quite clear with default parameters and the trivial algorithm,
thus not really needing further analysis, and another scenario that points to the right
direction, but does not locate the right fault. It makes no sense to examine scenarios
that clearly propose a wrong element as the cause, because in these cases, the injected
fault is too weak to have a significant effect, the anomaly detector has failed, or there
has been some problem with the experiment.

67

Chapter 4 Evaluation

1. The result of the second database connection slowdown experiment, where a
Thread.sleep(10) command has been injected into every monitored database call
of the component persistence.sqlmapdao.ItemSqlMapDao, is nearly perfect. All
elements related to the fault are deep red and get high ratings. The highest ratings
on their respective levels are assigned to the correct elements. A strong propagation
effect is visible up to the Presentation layer. The remaining goal for non-trivial
correlation algorithms is to improve the contrast, to emphasize the cause of failure
even more, and to level down other elements.

2. In case of the third programming fault experiment, where an empty list is
created instead of fetching a list through an access to the database in the
method getItemListByProduct(String,int,int) in the CatalogService on
Presentation layer, the pure numbers of the result are not perfect, but should
allow an experienced administrator to draw the correct conclusions. The causing
element receives a high rating, and a propagation to subsequent elements is visible,
but other elements are rated as being the highest each, in fact on every hierarchy
level. Hence, the main goal for further analysis is to correct the result to show right
cause as clearly as possible.

4.5.2 Examination Activities
The analysis is automated to a large extent. Tpan takes several parameters that can
be passed through command line parameters, or listed in Properties files. The use of
Properties, the class loading functionality, and the batch override mode mentioned in
Section 3.6.2 can save much time by allowing to run the Correlator plug-in multiple times
on the same data without having to restart Tpan, or to reload the data.
The remaining activities are:

Configuration of the Tpan control script. Menu entries are pre-selected, e.g. to re-
move 300 seconds each. This has to be done only once.

Selection of the data source. For each examination, one of the two chosen experiments
is selected to import the raw timing behavior data from.

Selection of the examination parameters. According to the five examination criteria,
the algorithms and their parameters are specified as well as additional output
configurations.

Figure 3.1 on page 18 gives an overview of the data flow within Tpan while the lower
part of Figure A.1 on page 92 lists the specific activities of the automated analysis. The
following steps are performed after the data has been loaded and pre-processed by Tpan,
and the Correlator plug-in is activated:

• The experiment configuration is loaded either from the Tpan Properties, or from
a special CSV file as introduced in Section 3.6.2. This may contain parameter

68

4.5 Analysis

overrides as well as the position of fault injection. If no instructions are found, a
default experiment is created that does not override any parameters.

• For each experiment, a complete and independent analysis is performed by the
Correlator. After constructing a model of the application under analysis from
message traces and evaluated executions, the specified algorithm for correlation is
loaded and applied on the data as detailed in Section 3.5.

• The results are printed to the command line interface, and written to the specified
graphical output formats as described in Section 3.6.

• Finally, for all experiments, a summary file is written in CSV format.

4.5.3 Default Parameter Selection
The trivial and the simple algorithm do not have any parameters to vary. Most of the
starting parameters for the advanced algorithm are set rather neutral: The “in out rela-
tion” factor, and the “neighborhood mean distance exponent” are set to 1.0, eliminating
any special influence. The mean calculation methods for correlation on operation level,
and for aggregation on deployment context level are switched to simple arithmetic mean.
The aggregation on operation level is done using a root mean square (power mean with
exponent 2.0) by default, while the aggregation on component level relies on a maximum
function. Finally, the edge weight method is switched to absolute mode that includes
the number of executions per element into the calculations.

The following sections contain descriptions of the seven examination variants that have
been applied: Five variations of settings and parameters, and two applications of the
new found parameters.

4.5.4 Three Algorithms
The Correlator plug-in brings along three different implementations to process the data
as described in Section 3.5.3. In short, the trivial algorithm performs pure aggregation
using unweighted arithmetic mean calculations on each hierarchy level only. The simple
algorithm takes some effort to produce a better result using few simple rules to detect two
special configurations in the application element structure that are indicators to increase
or decrease the ratings. The advanced algorithm is based on some speculations on the
effects of anomaly propagation. It is much more complex than the other algorithms in
that it uses additional parameters and calculations.
The goal of this first examination is to check whether the correlation result improves

with increasing complexity of the algorithms, and to have a basis for the other examina-
tions that vary different parameters of the advanced algorithm.
Regarding the numbers shown in Table 4.6, the success of 1.0 confirms that for the

database connection slowdown, every algorithm identifies the correct cause. For both

69

Chapter 4 Evaluation

Experiment Algorithm success clearop clearcomp cleardc CRmax

DB conn. slowdown Trivial 1.0 0.3615 0.5934 1.2420 1.0
Fault scenario No. 5 Simple 1.0 0.3793 0.7081 1.3542 1.0
(Component level) Advanced 1.0 0.3641 0.5363 1.2288 0.7018
Programming fault Trivial 0.99996 0.4690 0.4854 1.0573 0.9948
Fault scenario No. 3 Simple 0.99996 0.4988 0.4938 1.0770 0.9948
(Operation level) Advanced 1.0 0.3857 0.4780 0.9363 0.4880

Table 4.6: Results of the experimental comparison of three algorithms in two scenarios.
The clearness function is given for the three hierarchy levels – operation,
component, and deployment context. The last column contains the highest
cause rating on the level where the fault injection has been applied.

Trivial Simple Advanced

0
.0

0
.5

1
.0

1
.5

C
le

a
rn

e
s
s

Fault Scenario 5: DB Connection Slowdown

Trivial Simple Advanced

0
.0

0
.5

1
.0

1
.5

C
le

a
rn

e
s
s

Fault Scenario 3: Programming Fault

Depl. Context Level
Component Level
Operation Level

Figure 4.13: Charts of the clearness ratings for three algorithms in two scenarios. The
colors are pale where the success does not reach 100%, thus the clearness
values are less relevant.

70

4.5 Analysis

Experiment Relation success clearop clearcomp cleardc CRmax

DB conn. slowdown 0.1 1.0 0.3638 0.5389 1.2377 0.7018
Fault scenario No. 5 0.2 1.0 0.3640 0.5387 1.2367 0.7018
(Component level) 0.3 1.0 0.3641 0.5384 1.2357 0.7018

0.5 1.0 0.3642 0.5387 1.2336 0.7018
1.0 1.0 0.3641 0.5363 1.2288 0.7018
2.0 1.0 0.3636 0.5333 1.2203 0.7018
3.0 1.0 0.3628 0.5302 1.2116 0.7018
5.0 1.0 0.3608 0.5222 1.1936 0.7018
10.0 0.9876 0.3579 0.5110 1.1578 0.7232

Programming fault 0.1 1.0 0.4000 0.4968 0.9341 0.4880
Fault scenario No. 3 0.2 1.0 0.3989 0.4958 0.9328 0.4880
(Operation level) 0.3 1.0 0.3974 0.4943 0.9314 0.4880

0.5 1.0 0.3942 0.4901 0.9285 0.4880
1.0 1.0 0.3857 0.4780 0.9363 0.4880
2.0 0.9304 0.4044 0.5126 0.9551 0.5993
3.0 0.8753 0.4226 0.5529 0.9698 0.7000
5.0 0.8188 0.4403 0.6029 0.9895 0.8174
10.0 0.7661 0.4551 0.6571 1.0072 0.9424

Table 4.7: Results of the experimental comparison of the in-out-relation in two scenarios.

experiments, and for every hierarchy level, the clearness is the highest with the simple
algorithm, as can also be seen in Figure 4.13. While the advanced algorithm reaches
a 100% success for the programming fault injection, the highest cause rating drops
significantly for both experiments.
Note: Some of those values that seem to be identical in fact differ in the 15th decimal

place – that might be due to rounding errors inherent to the runtime environment.

4.5.5 In-Out-Relation
In this examination, the relation between the influence of incoming and outgoing con-
nections in the dependency structure during correlation on operation level that has been
introduced in Equations 3.13 and 3.14 on page 39 is varied in the range of [0.1, 10.0].
For the database connection slowdown experiment, Table 4.7 and Figure 4.14 show

few variations in the results. There is a slight tendency that smaller values work better,
i.e. the influence of the outgoing (callee) connection is weakened. For very large values,
the results become incorrect (success < 1.0).
The second experiment supports that: For small values, there is no significant change,

while large values spoil the quality of the results.

4.5.6 Edge Weight Methods
This short examination is about different methods to calculate the edge weight used for
correlation on operation level. The “absolute” method uses the number of connections
between the elements, while the “relative” method uses their percentages.

71

Chapter 4 Evaluation

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0
.4

0
.6

0
.8

1
.0

1
.2

In−out−relation factor

C
le

a
rn

e
s
s

Fault Scenario 5: DB Connection Slowdown

Depl. Context Level
Component Level
Operation Level

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0
.4

0
.6

0
.8

1
.0

1
.2

In−out−relation factor

C
le

a
rn

e
s
s

Fault Scenario 3: Programming Fault

Depl. Context Level
Component Level
Operation Level

Figure 4.14: Charts of the clearness ratings plotted against a number of values for the
relation between incoming and outgoing connections in two scenarios. In
the second scenario, the good performance for large values is misleading as
long as the related success rating is smaller than 1.0.

Experiment Method success clearop clearcomp cleardc CRmax

DB conn. slowdown Absolute 1.0 0.3641 0.5363 1.2288 0.7018
Fault scenario No. 5 Relative 1.0 0.3693 0.5612 1.3156 0.8354
Programming fault Absolute 1.0 0.3857 0.4780 0.9363 0.4880
Fault scenario No3̇ Relative 1.0 0.4323 0.5349 0.9538 0.5653

Table 4.8: Results of the experimental comparison of the edge weight method in two
scenarios.

Absolute Relative

0
.0

0
.4

0
.8

1
.2

C
le

a
rn

e
s
s

Fault Scenario 5: DB Connection Slowdown

Absolute Relative

0
.0

0
.4

0
.8

1
.2

C
le

a
rn

e
s
s

Fault Scenario 3: Programming Fault

Depl. Context Level
Component Level
Operation Level

Figure 4.15: Charts of the clearness ratings for two edge weight methods in two scenar-
ios.

72

4.5 Analysis

For both experiments, the numbers in Table 4.8 that are also plotted in Figure 4.15
reveal a distinct advantage of the “relative” method: All clearness ratings as well as the
highest ratings are increased. However, for the programming fault experiment with the
“relative” method, a false deployment context is marked with the highest probability of
containing the cause as a consequence of the correct context receiving a lower rating.

4.5.7 Mean Calculation Methods

By default, as described in Section 4.5.3, the Correlator makes use of three different
methods in different situations to each combine many values into one value: The median
function, the maximum function, or the power mean function. The latter, provided with
a variable exponent, is a superset of several mean functions, including the arithmetic
mean (exponent 1.0), and the root mean square (RMS, exponent 2.0). With increasing
exponent, the influence of outliers is also increased.
Traditionally, the median is used to handle outliers in the samples. In the correlator’s

input data however, first, because of the pre-processing by the anomaly detector, and
because of the limitation of the anomaly score to [−1, 1], there are not any real outliers,
and second, the extreme values are not considered “contaminations” but should instead
get special respect. Therefore, it is expected that the root mean square performs better
than the median.
40 passes of the Correlator plug-in are performed to analyze the influence of the mean

calculation methods on the result: For each of the four situations, and for both scenarios,
five methods are applied. Regarding the numbers in Table 4.9 as well as the charts in
the Figures 4.16 and 4.17, for both scenarios, for aggregation on operation level, the
power mean with exponent 0.5 seems to perform the best, but the advance is small. The
maximum method is far behind. For correlation on operation level, the median seems to
perform well for the first scenario, but the result is wrong for the second one. The same
applies to the “weakening” power mean. Instead, the maximum method performs the
best. For aggregation on component level, the trend goes to weakening the outliers for
the first scenario. For the second one, the results are less clear, but the maximum method
performs slightly better. For aggregation on deployment context level, the trends are in
opposite directions: While for the first scenario, the weakening of outliers is favored, for
the second scenario, it seems to be better to emphasize them – thus there is no winner
on this level.

4.5.8 Neighborhood Mean Distance Exponents

Introduced in Equation 3.8 on page 36, the neighborhood mean distance exponent is
used to emphasize (ed > 1.0) or weaken (ed < 1.0) the influence of distance during the
correlation on operation level. It is part of the edge weight calculation, where the influ-
ence of connected elements decreases with increasing distance to the element currently
under processing.

73

Chapter 4 Evaluation

(a) Fault scenario 5: “Database connection slowdown”.
Calculation Mean Method success clearop clearcomp cleardc CRmax

Operation Median 1.0 0.3668 0.5414 1.1667 0.7008
aggregation Power Mean 0.5 1.0 0.3770 0.5359 1.1181 0.5311

Arithmetic Mean 1.0 0.3722 0.5398 1.1487 0.6130
Root Mean Square 1.0 0.3641 0.5363 1.2288 0.7018
Maximum 1.0 0.2913 0.4079 0.8997 0.9949

Operation Median 1.0 0.3822 0.5936 1.4163 1.0
correlation Power Mean 0.5 1.0 0.3646 0.5316 1.2118 0.6474

Arithmetic Mean 1.0 0.3641 0.5363 1.2288 0.7018
Root Mean Square 1.0 0.3657 0.5468 1.2598 0.7512
Maximum 1.0 0.3631 0.5640 1.4042 1.0

Component Median 1.0 0.3641 0.6019 1.1702 0.7018
aggregation Power Mean 0.5 1.0 0.3641 0.5935 1.1360 0.6245

Arithmetic Mean 1.0 0.3641 0.5836 1.1498 0.6256
Root Mean Square 1.0 0.3641 0.5717 1.1582 0.6279
Maximum 1.0 0.3641 0.5363 1.2288 0.7018

Deployment Median 1.0 0.3641 0.5363 1.2937 0.7018
context Power Mean 0.5 1.0 0.3641 0.5363 1.2513 0.7018
aggregation Arithmetic Mean 1.0 0.3641 0.5363 1.2288 0.7018

Root Mean Square 1.0 0.3641 0.5363 1.2337 0.7018
Maximum 1.0 0.3641 0.5363 1.2279 0.7018

(b) Fault scenario 3: “Programming fault”.
Calculation Mean Method success clearop clearcomp cleardc CRmax

Operation Median 1.0 0.3780 0.4764 0.9501 0.4966
aggregation Power Mean 0.5 1.0 0.3984 0.4923 0.9210 0.4782

Arithmetic Mean 1.0 0.3914 0.4865 0.9280 0.4800
Root Mean Square 1.0 0.3857 0.4780 0.9363 0.4880
Maximum 1.0 0.2985 0.4086 0.8998 0.9940

Operation Median 0.9441 0.3726 0.4687 0.9464 0.4595
correlation Power Mean 0.5 0.9927 0.3752 0.4597 0.9361 0.4269

Arithmetic Mean 1.0 0.3857 0.4780 0.9363 0.4880
Root Mean Square 1.0 0.4214 0.5271 0.9694 0.5908
Maximum 1.0 0.4977 0.7692 0.9751 0.9947

Component Median 1.0 0.3857 0.4269 0.9477 0.4880
aggregation Power Mean 0.5 1.0 0.3857 0.4305 0.9484 0.4880

Arithmetic Mean 1.0 0.3857 0.4301 0.9482 0.4880
Root Mean Square 1.0 0.3857 0.4264 0.9443 0.4880
Maximum 1.0 0.3857 0.4780 0.9363 0.4880

Deployment Median 1.0 0.3857 0.4780 0.9288 0.4880
context Power Mean 0.5 1.0 0.3857 0.4780 0.9340 0.4880
aggregation Arithmetic Mean 1.0 0.3857 0.4780 0.9363 0.4880

Root Mean Square 1.0 0.3857 0.4780 0.9951 0.4880
Maximum 1.0 0.3857 0.4780 1.0861 0.4880

Table 4.9: Results of the experimental comparison of mean calculation methods in two
scenarios.

74

4.5 Analysis

Median P−Mean 0.5 Arithmetic RMS Maximum

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

C
le

a
rn

e
s
s

Operation Aggregation

Depl. Context Level
Component Level
Operation Level

Median P−Mean 0.5 Arithmetic RMS Maximum

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

C
le

a
rn

e
s
s

Operation Correlation

Depl. Context Level
Component Level
Operation Level

Median P−Mean 0.5 Arithmetic RMS Maximum

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

C
le

a
rn

e
s
s

Component Aggregation

Depl. Context Level
Component Level
Operation Level

Median P−Mean 0.5 Arithmetic RMS Maximum

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

C
le

a
rn

e
s
s

Deployment Context Aggregation

Depl. Context Level
Component Level
Operation Level

Figure 4.16: Charts of the clearness ratings for five mean calculation methods in the
“database connection slowdown” scenario.

75

Chapter 4 Evaluation

Median P−Mean 0.5 Arithmetic RMS Maximum

0
.4

0
.6

0
.8

1
.0

C
le

a
rn

e
s
s

Operation Aggregation

Depl. Context Level
Component Level
Operation Level

Median P−Mean 0.5 Arithmetic RMS Maximum

0
.4

0
.6

0
.8

1
.0

C
le

a
rn

e
s
s

Operation Correlation

Depl. Context Level
Component Level
Operation Level

Median P−Mean 0.5 Arithmetic RMS Maximum

0
.4

0
.6

0
.8

1
.0

C
le

a
rn

e
s
s

Component Aggregation

Depl. Context Level
Component Level
Operation Level

Median P−Mean 0.5 Arithmetic RMS Maximum

0
.4

0
.6

0
.8

1
.0

C
le

a
rn

e
s
s

Deployment Context Aggregation

Depl. Context Level
Component Level
Operation Level

Figure 4.17: Charts of the clearness ratings for five mean calculation methods in the
“programming fault” scenario.

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Neighborhood mean distance exponent

C
le

a
rn

e
s
s

Fault Scenario 5: DB Connection Slowdown

Depl. Context Level
Component Level
Operation Level

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Neighborhood mean distance exponent

C
le

a
rn

e
s
s

Fault Scenario 3: Programming Fault

Depl. Context Level
Component Level
Operation Level

Figure 4.18: Charts of the clearness ratings plotted against a number of values for the
neighborhood mean distance exponent in two scenarios.

76

4.5 Analysis

Experiment Exponent success clearop clearcomp cleardc CRmax

DB conn. slowdown 0.1 1.0 0.3477 0.4915 1.1441 0.5093
Fault scenario No. 5 0.2 1.0 0.3494 0.4958 1.1514 0.5264
(Component level) 0.3 1.0 0.3512 0.5003 1.1593 0.5449

0.5 1.0 0.3550 0.5101 1.1768 0.5854
1.0 1.0 0.3641 0.5363 1.2288 0.7018
2.0 1.0 0.3737 0.5693 1.3336 0.9016
3.0 1.0 0.3731 0.5712 1.3887 0.9783
5.0 1.0 0.3701 0.5679 1.4190 0.9992
10.0 1.0 0.3696 0.5685 1.4256 1.0

Programming fault 0.1 0.9754 0.3755 0.4654 0.9330 0.4465
Fault scenario No3̇ 0.2 0.9801 0.3751 0.4646 0.9332 0.4456
(Operation level) 0.3 0.9852 0.3746 0.4637 0.9334 0.4446

0.5 0.9970 0.3735 0.4617 0.9339 0.4424
1.0 1.0 0.3857 0.4780 0.9363 0.4880
2.0 1.0 0.4254 0.5465 0.9486 0.6435
3.0 1.0 0.4683 0.6459 0.9742 0.8143
5.0 1.0 0.5114 0.7657 0.9803 0.9667
10.0 1.0 0.5232 0.7939 0.9626 0.9945

Table 4.10: Results of the experimental comparison of different values for the neighbor-
hood mean distance exponent in two scenarios.

The numbers in Table 4.10 as well as the charts in Figure 4.18 clearly show a trend
that larger values perform better in both scenarios. For values smaller than 1.0, the
result even becomes incorrect for the “programming fault” scenario.

4.5.9 Three Algorithms with New Parameters

To check how much the results of the advanced algorithm compared to the simpler
algorithm variants can be improved when applying the parameter values that are found
out to provide better results in the preceding examinations, another examination is
performed that uses the combined new settings listed in Table 4.11.

Parameter Starting setting Optimized setting
In-out-relation 1.0 0.2
Edge weight method Absolute Relative
Mean calculation methods
Aggregation on operation level Root mean square Power mean 0.5
Correlation on operation level Arithmetic mean Maximum
Aggregation on component level Maximum Arithmetic mean
Aggregation on depl. context level Arithmetic mean Root mean square

Neighborhood mean distance exponent 1.0 5.0

Table 4.11: Comparison of starting and optimized parameters.

77

Chapter 4 Evaluation

Experiment Algorithm success clearop clearcomp cleardc CRmax

DB conn. slowdown Trivial 1.0 0.3615 0.5934 1.2420 1.0
Fault scenario No. 5 Simple 1.0 0.3793 0.7081 1.3542 1.0
(Component level) Advanced 1.0 0.3641 0.5363 1.2288 0.7018

Optimized 1.0 0.3740 0.7461 1.3466 1.0
Programming fault Trivial 0.99996 0.4690 0.4854 1.0573 0.9948
Fault scenario No. 3 Simple 0.99996 0.4988 0.4938 1.0770 0.9948
(Operation level) Advanced 1.0 0.3857 0.4780 0.9363 0.4880

Optimized 1.0 0.5176 0.4257 0.9027 0.9947

Table 4.12: Results of the advanced algorithm with optimized parameters, compared to
the results from the first comparison of the three algorithm variants.

Trivial Simple Advanced Optimized

0
.0

0
.5

1
.0

1
.5

C
le

a
rn

e
s
s

Fault Scenario 5: DB Connection Slowdown

Trivial Simple Advanced Optimized

0
.0

0
.5

1
.0

1
.5

C
le

a
rn

e
s
s

Fault Scenario 3: Programming Fault

Depl. Context Level
Component Level
Operation Level

Figure 4.19: Charts of the clearness ratings for the advanced algorithm with optimized
parameters, compared to the results from the first comparison of the three
algorithm variants.

78

4.5 Analysis

Virtual Machine ’tier’

Virtual Machine ’klotz’

Virtual Machine ’scooter’Virtual Machine ’puck’

$

org.apache.struts.action.ActionServlet

presentation.OrderBean presentation.CatalogBean presentation.CartBean presentation.AccountBean

persistence.sqlmapdao.ItemSqlMapDao

service.hessian.server.CatalogService

persistence.sqlmapdao.ProductSqlMapDao

service.hessian.client.OrderService

service.hessian.server.OrderService

service.hessian.client.CatalogService service.hessian.client.AccountService

service.hessian.server.AccountService

persistence.sqlmapdao.OrderSqlMapDao persistence.sqlmapdao.AccountSqlMapDao

(a) Dependency graph for the “trivial algorithm”.

Virtual Machine ’tier’

Virtual Machine ’klotz’

Virtual Machine ’scooter’Virtual Machine ’puck’

$

org.apache.struts.action.ActionServlet

presentation.OrderBean presentation.AccountBean presentation.CatalogBean presentation.CartBean

persistence.sqlmapdao.ItemSqlMapDao persistence.sqlmapdao.ProductSqlMapDao

service.hessian.server.CatalogService

service.hessian.client.OrderService

service.hessian.server.OrderService

service.hessian.client.AccountService

service.hessian.server.AccountService

service.hessian.client.CatalogService

persistence.sqlmapdao.OrderSqlMapDao persistence.sqlmapdao.AccountSqlMapDao

(b) Dependency graph for the “optimized algorithm”.

Figure 4.20: Comparison of the colored dependency graphs for correlation with the trivial
and optimized algorithm for the “database connection slowdown” scenario.

As can be seen in Table 4.12 and Figure 4.19, for the “database connection slowdown”
scenario, the optimized advanced algorithm performs better than the other variants,
especially on component level, where the fault injection happened, and better than the
non-optimized variant. The simple algorithm provides non-significantly higher values on
operation and deployment context level though.

The results for the “programming fault” scenario are similar: The other variants pro-
vide single values that are slightly better than those of the optimized variant, but on the
essential level where the injection took place – operation level in this case –, the result
is correct (success = 1.0), and the clearness rating is good in comparison.

The advantage becomes more clear when looking at the colored dependency graphs.
For example, Figure 4.20 depicts the results for the “database connection slowdown”
scenario, for the trivial and the optimized algorithm, reduced to component and deploy-
ment context level. The correct elements are highlighted in both cases, and in deep red
color, while the other elements are mostly green with a high contrast for the optimized

79

Chapter 4 Evaluation

Experiment Algorithm success clearop clearcomp cleardc CRmax

Programming fault Trivial 1.0 0.4620 0.5952 1.0563 0.7863
Fault scenario No. 1 Simple 1.0 0.4643 0.4991 1.0663 0.7863
(Operation level) Advanced 0.9129 0.3486 0.4693 0.9735 0.5044

Optimized 1.0 0.3437 0.4091 0.8965 0.2593
Programming fault Trivial 1.0 0.4350 0.5817 1.2132 0.9928
Fault scenario No. 2 Simple 1.0 0.4383 0.5877 1.2272 0.9928
(Operation level) Advanced 1.0 0.3947 0.5285 1.1076 0.6340

Optimized 1.0 0.4763 0.5034 1.0187 0.9705
DB conn. slowdown Trivial 1.0 0.4199 0.5484 1.5667 1.0
Fault scenario No. 4 Simple 1.0 0.4334 0.5884 1.6524 1.0
(Component level) Advanced 1.0 0.3413 0.4408 1.0174 0.1997

Optimized 1.0 0.4380 0.5947 1.5206 1.0

Table 4.13: Results of the cross-check examinations of three other fault injection scenar-
ios, analyzed with four algorithm variants.

Trivial Simple Advanced Optimized

0
.0

0
.5

1
.0

1
.5

Fault Scenario 1: Progr. Fault

C
le

a
rn

e
s
s

Depl. Context Level
Component Level
Operation Level

Trivial Simple Advanced Optimized

0
.0

0
.5

1
.0

1
.5

Fault Scenario 2: Progr. Fault

Trivial Simple Advanced Optimized

0
.0

0
.5

1
.0

1
.5

Fault Scenario 4: DB Connection

Figure 4.21: Charts of the clearness ratings for three other fault injection scenarios,
analyzed with four algorithm variants.

algorithm. On the other hand, there is much yellow and orange color for the trivial
algorithm, meaning uncertainty regarding the cause of failure.

4.5.10 Cross-Check Appliance to Other Fault Scenarios

To get a clue whether the newly found parameters are only useful with the “trained”
scenarios, or whether they work with other scenarios as well, a cross-check examination is
performed with the timing data from the experiment scenarios No. 1, 2, and 4. The first
two of these were exposed to the programming faults that are discussed in Section 4.3.1
on page 55. The fourth scenario was subject to another database connection slowdown
experiment as explained in Section 4.3.2 on page 58. As noted in Table 4.5 on page 66,
No. 2 is the scenario that showed the best results in the first place, while No. 1 and 4
point to the right direction, giving opportunity for improvements.

80

4.6 Summary

Scenario Injection Variant Trivial Simple Advanced Optimized Avg.
No. 1 Programming fault + + - - o 3.0
No. 2 Programming fault + + o ++ 2.0
No. 3 Programming fault - - + ++ 2.8
No. 4 DB conn. slowdown + ++ o ++ 1.8
No. 5 DB conn. slowdown + ++ + ++ 1.5

Averages 2.4 2.0 2.8 1.4 2.2

Table 4.14: Overview of the examination results on the five fault injection scenarios on
operation and component level. The averages have been calculated as if the
rating system would equal the values from 1 (++) to 5 (- -).

For the first scenario, the numbers in Table 4.13 and the plots in Figure 4.21 show that
the “optimized” algorithm variant performs significantly worse than the other variants,
even than the un-optimized variant – but at least the result is correct now (success = 1.0).
For the scenarios No. 2 and 4, similar to the observations in the previous section, there

is a significant enhancement for the optimized algorithm, on the respective level where
the fault has been injected, at the expense of contrast on the other levels.

4.6 Summary

The fault injection experiments on deployment context level are of not much use for
further examination, because their results are either all too clear, or they are completely
wrong in many cases, because the Catalog context on the host jpet4 (“tier”) shows a
large number of anomalies in almost every situation for unknown reason.
Four of the five faults that have been injected on operation and component level are

localized with high precision by the optimized advanced algorithm variant. As can be
seen in Table 4.14, the scenarios have different levels of difficulty, and the algorithm
variants have different strengths.
Overall, the optimized advanced algorithm performs best in the selected examinations.

It provides a correct and clear result not only for the scenarios it has been trained
for, but also for two other fault scenarios as well – one programming fault, and one
database connection slowdown. The remaining fault scenario is still evaluated correctly
(success = 1.0), and a significant enhancement is achieved in comparison to the un-
optimized variant, but the simpler algorithms provide higher contrast.
The simple algorithm has an advantage over the trivial variant, but the difference is

small in most of the cases. When looking at the colored dependency graphs, the contrast
produced by the simple algorithm is usually better. Images produced with the trivial
algorithm – see e.g. Figure 4.20(a) – contain more yellow and orange shading, reflecting
the presence of relative high ratings for a certain percentage of the elements.

81

Chapter 4 Evaluation

Conclusion The advanced algorithm with optimized parameters offers a good chance
to point to the right cause, but not without a risk of denoting false positives. This risk
is much smaller with the trivial and simple algorithms, although they tend to show more
of the effect, and less of the cause.

Performance
According to Ant, one complete automated run of Tpan with loading 60 MiB of raw
timing data, and with correlation of about 41,000 message traces containing 262,000
executions takes round about 60 seconds on an Athlon 1500 MHz with 1 GiB main
memory (3.2 GiB/sec peak transfer rate). The Java Virtual Machine uses up to about
400 MiB memory. The small share of time that the Correlator plug-in takes up can be
estimated in that one run of Tpan including a series of 20 correlations (including the
creation of the dot file and the export to SVG, PS, and PNG) takes little more than 200
seconds on the same machine. Another run with 9 correlations that took a total of 115
seconds suggests that for the current examinations, the pre-processing by Tpan requires
about 50 seconds, and a correlation run takes about 7 seconds each.

82

Chapter 5

Conclusions

As part of an approach for failure diagnosis, a prototype for an anomaly correlator has
been developed as a plug-in for Tpan, the analysis component of Kieker [Rohr et al.,
2008b]. In order to improve the fault localization methods that are currently under
development by our group, an existing technique for timing behavior anomaly detection
[Rohr et al., 2008a] is combined with derived dependency graphs.
The Correlator is loaded with pre-processed timing behavior data in the form of mes-

sage traces that allow to construct a calling dependency graph of the application under
analysis. In the second step, information about timing anomalies are added in the form
of evaluated executions that have been analyzed by an anomaly detector.
The idea of anomaly correlation is based on the assumption that timing behavior

anomalies propagate through the dependency graph, leaving a kind of pattern. In the
approach, the propagation is tried to perform backwards, examining small-scale configu-
rations of application elements, and applying simple logical rules on the elements’ inner
state, also considering their respective environment in the dependency structure.
The plug-in can be extensively configured, and provides methods for automated con-

trol using Java Properties, an experiment batch instruction file, a parameter override
mechanism, and an algorithm class loader. Three levels of aggregation – operations, com-
ponents, and deployment context – are processed to calculate and assign rating values
to the application elements that reflect the probability to be the cause of failure.
Along with Tpan, the main interface of the plug-in is the text console. Additional to

status and debug messages on screen, a log file is written. The results of the analysis
are collected per experiment in a CSV file, and can be fetched through method calls
inside of Tpan. Visualization is possible via a highly configurable export to Graphviz dot
files that can in turn be converted to various image file formats where the cause rating
results are represented by color shades in green to yellow to red. The raw anomaly score
distributions as evaluated by the anomaly detector are optionally depicted within the
graph elements as histograms in the same color scheme.

The approach has been applied to the distributed JPetStore, our sample application,
under the influence of workload generation and fault injection. In a series of 42 exper-
iments, 14 faults out of five categories are applied at various points in the application.
Timing behavior information is collected during runtime by Tpmon and written to the
file system.

83

Chapter 5 Conclusions

Two experiments have been selected to be used for the examination of the Correlator’s
abilities, and to optimize its parameters. Three algorithms are tested, and five settings
and parameters are varied to each examine their influence on the results. Finally, the
optimized parameters are used in combination, and applied to the data of three other
experiments.

The following Section 5.1 gives an overview of the positive results of the current work.
In Section 5.2, the limits and drawbacks are discussed. Finally, Section 5.3 contains a
list of ideas for possible enhancements of the correlation process, and of the evaluation.

5.1 Achievements
The concept works. The Correlator prototype is a highly configurable tool for failure
diagnosis based on timing behavior. Although not always pinpointing the correct element
of fault injection, at least it declares large parts of the application as not containing a
fault with high probability, thus reducing the search space for further examinations. The
results of the evaluation show that a complex algorithm is able to perform significantly
better than a simple aggregation of anomaly scores. The system resource usage of the
plug-in during analysis is good compared to other plug-ins that pre-process the data
within Tpan.
The Figures 5.1 and 5.2 show examples of the results that can be achieved. Both

graphs evolve from the same experiment, where a programming fault has been injected
in the operation CatalogService.getItemListByProduct(String,int,int). Due to
space restrictions, the deployment contexts for AccountService and OrderService are
omitted from the graphs.

• The graph in Figure 5.1 has been created after applying the trivial algorithm that
performs aggregation only: The anomaly ratings are accumulated by using a simple
unweighted arithmetic mean calculation for each element.

Although the operation containing the fault is colored in red shade, it is not clas-
sified to be the cause of failure. Furthermore, the higher-level elements containing
this operation are also classified incorrectly.

• The graph in Figure 5.2 has been created after applying the advanced algorithm
that tries to use some extra knowledge according to the approach presented in
Chapter 3.

The fault localization is very good: The operation that contains the fault as well as
its superior elements are correctly classified and marked as having the highest rating
on their respective level. At the same time, all other elements have significantly
lower ratings that are reflected in the green to yellow color shades.

84

5.2 Limitations

For fault injection on component level, an example for a similar progress can be seen
in Figure 4.20 on page 79. This examination also confirms the value of the clearness
rating, introduced in Section 4.1 (pg. 48), that is used for benchmarking the results on
the hierarchy levels. As long as the user does not feel confused about the coexistence of
three of these ratings, it properly reflects the visual impression of the colored dependency
graphs.

5.2 Limitations
In order to get clear results, certain preconditions have to be fulfilled.

• Training data had been collected during a long period of fault-free activity of the
application under analysis.

• A failure has occurred, and has been detected in a short period of time.

• The failure is caused by a single fault.

• The fault has an effect on timing behavior.

• The measurements of the timing behavior are correct.

• The anomaly detection works satisfyingly.

During the preparation for the experiments, it turned out that it is hard to construct
faults that on the one hand are sufficiently realistic, and on the other hand produce a
timing behavior anomaly, and only a timing behavior anomaly as far as possible (e.g.
no Java exception, no distinct error message, and no system outage). In addition, the
effect of the anomaly has to be strong enough to be correctly classified by the anomaly
detector, but weak enough to retain a challenge for our studies.
In the examinations performed in Chapter 4, two variants of programming faults have

been injected – a method is called twice, and a method call is omitted –, and both are
shown to have significant effect on timing behavior, extending or reducing the execution
time of the affected operation. On component level, an explicit anomaly injection (in
contrast to a fault injection) was applied by adding calls to Thread.sleep(long) to let
the application wait a fixed amount of time. As expected, this fault category is also well
detected and classified by our tools.
On the other hand, for the fault injection on deployment context level, our experiments

did not yield a fault category that meets the requirements: The effect of the manipula-
tions is non-significant, or completely wrong in most cases as discussed in Section 4.4.2
(pg. 63), so that the correctness for the few remaining cases cannot be ensured. Thus,
it stays unclear whether other categories of real-life faults are detected with sufficient
quality, and how the analysis performs outside our experiment environment.

85

Chapter 5 Conclusions

V
ir
tu

a
l
M

a
c
h
in

e
 ’
ti
e
r’

[
4
1
4
7
2
/6

1
0
9
8
 |
 0

,1
2
 |
 2

8
,8

3
%

]

s
e

rv
ic

e
.h

e
s
s
ia

n
.s

e
rv

e
r.

C
a

ta
lo

g
S

e
rv

ic
e

[
2

8
6

2
2

/4
3

4
9

8
 |
 0

,0
9

1
 |
 7

,3
4

%
]

p
e

rs
is

te
n

c
e

.s
q

lm
a

p
d

a
o

.I
te

m
S

q
lM

a
p

D
a

o
[

6
2

6
4

/8
4

3
3

 |
 0

,1
3

5
 |
 7

,6
3

%
]

p
e

rs
is

te
n

c
e

.s
q

lm
a

p
d

a
o

.P
ro

d
u

c
tS

q
lM

a
p

D
a

o
[

6
5

8
6

/9
1

6
7

 |
 0

,1
2

7
 |
 7

,5
8

%
]V
ir
tu

a
l
M

a
c
h
in

e
 ’
k
lo

tz
’

[
1
1
0
4
9
6
/1

9
6
3
1
0
 |
 −

0
,0

0
 |
 2

5
,7

9
%

]

p
re

s
e

n
ta

ti
o

n
.C

a
ta

lo
g

B
e

a
n

[
1

8
1

3
8

/2
6

8
3

7
 |
 0

,2
5

9
 |
 8

,4
7

%
]

p
re

s
e

n
ta

ti
o

n
.O

rd
e

rB
e

a
n

[
1

4
5

4
/3

9
1

7
 |
 −

0
,0

7
4

 |
 6

,2
3

%
]

p
re

s
e

n
ta

ti
o

n
.C

a
rt

B
e

a
n

[
1

1
0

7
/2

1
7

0
 |
 −

0
,0

2
9

 |
 6

,5
3

%
]

s
e

rv
ic

e
.h

e
s
s
ia

n
.c

lie
n

t.
C

a
ta

lo
g

S
e

rv
ic

e
[

4
6

4
6

9
/7

4
2

6
9

 |
 0

,2
3

6
 |
 8

,3
1

%
]

s
e

rv
ic

e
.h

e
s
s
ia

n
.c

lie
n

t.
O

rd
e

rS
e

rv
ic

e
[

4
8

4
/9

8
1

 |
 −

0
,0

9
6

 |
 6

,0
8

%
]

p
re

s
e

n
ta

ti
o

n
.A

c
c
o

u
n

tB
e

a
n

[
4

9
4

/1
0

8
8

 |
 −

0
,1

2
3

 |
 5

,9
0

%
]

o
rg

.a
p

a
c
h

e
.s

tr
u

ts
.a

c
ti
o

n
.A

c
ti
o

n
S

e
rv

le
t

[
4

1
8

2
7

/8
5

9
6

0
 |
 −

0
,0

8
6

 |
 6

,1
5

%
]

s
e

rv
ic

e
.h

e
s
s
ia

n
.c

lie
n

t.
A

c
c
o

u
n

tS
e

rv
ic

e
[

5
2

3
/1

0
8

8
 |
 −

0
,0

8
8

 |
 6

,1
3

%
]

$

d
o
G

e
t(

H
tt
p
S

e
rv

le
tR

e
q
u
e
s
t,
H

tt
p
S

e
rv

le
tR

e
s
p
o
n
s
e
)

[
2
3
5
5
1
/3

9
8
2
4
 |
 0

,0
8
6
 |
 0

,0
8
6
 |
 3

,1
9
%

]

3
8

8
4

4

d
o
P

o
s
t(

H
tt
p
S

e
rv

le
tR

e
q
u
e
s
t,
H

tt
p
S

e
rv

le
tR

e
s
p
o
n
s
e
)

[
1
5
2
3
/3

1
5
6
 |
 −

0
,0

3
7
 |
 −

0
,0

3
7
 |
 2

,8
3
%

]

2
0

6
8

p
ro

c
e
s
s
(H

tt
p
S

e
rv

le
tR

e
q
u
e
s
t,
H

tt
p
S

e
rv

le
tR

e
s
p
o
n
s
e
)

[
1
6
7
5
3
/4

2
9
8
0
 |
 −

0
,3

0
8
 |
 −

0
,3

0
8
 |
 2

,0
3
%

]

3
9

8
2

4 3
1

5
6

g
e
tP

ro
d
u
c
t(

S
tr

in
g
)

[
6
5
3
4
/9

1
6
7
 |
 0

,1
3
4
 |
 0

,1
3
4
 |
 3

,3
3
%

]

g
e
tP

ro
d
u
c
t(

S
tr

in
g
)

[
6
5
8
6
/9

1
6
7
 |
 0

,1
2
7
 |
 0

,1
2
7
 |
 3

,3
1
%

]

9
1

6
7

g
e
tP

ro
d
u
c
tL

is
tB

y
C

a
te

g
o
ry

(S
tr

in
g
,i
n
t,
in

t)
[
6
6
9
2
/1

2
4
3
7
 |
 −

0
,0

5
7
 |
 −

0
,0

5
7
 |
 2

,7
7
%

]
g
e
tC

a
te

g
o
ry

(S
tr

in
g
)

[
8
0
6
5
/1

1
3
4
9
 |
 0

,1
0
9
 |
 0

,1
0
9
 |
 3

,2
6
%

]
g
e
tI
te

m
(S

tr
in

g
)

[
5
8
9
4
/8

4
3
3
 |
 0

,1
0
2
 |
 0

,1
0
2
 |
 3

,2
4
%

]

g
e
tI
te

m
(S

tr
in

g
)

[
6
2
6
4
/8

4
3
3
 |
 0

,1
3
5
 |
 0

,1
3
5
 |
 3

,3
3
%

]

8
4

3
3

is
It
e
m

In
S

to
c
k
(S

tr
in

g
)

[
1
4
3
7
/2

1
1
2
 |
 0

,1
6
6
 |
 0

,1
6
6
 |
 3

,4
2
%

]

v
ie

w
C

a
te

g
o
ry

()
[
5
7
6
2
/1

1
3
4
9
 |
 −

0
,0

3
8
 |
 −

0
,0

3
8
 |
 2

,8
3
%

]

g
e
tC

a
te

g
o
ry

(S
tr

in
g
)

[
6
3
0
9
/1

1
3
4
9
 |
 0

,0
2
9
 |
 0

,0
2
9
 |
 3

,0
2
%

]

1
1

3
4

9

g
e
tP

ro
d
u
c
tL

is
tB

y
C

a
te

g
o
ry

(S
tr

in
g
)

[
6
3
6
5
/1

2
4
3
7
 |
 −

0
,0

5
1
 |
 −

0
,0

5
1
 |
 2

,7
9
%

]

1
1

3
4

9

v
ie

w
P

ro
d
u
c
t(

)
[
9
0
9
4
/9

1
6
7
 |
 0

,8
1
8
 |
 0

,8
1
8
 |
 5

,3
4
%

]

g
e
tI
te

m
L
is

tB
y
P

ro
d
u
c
t(

S
tr

in
g
)

[
9
1
6
7
/9

1
6
7
 |
 0

,9
9
5
 |
 0

,9
9
5
 |
 5

,8
6
%

]

9
1

6
7

g
e
tP

ro
d
u
c
t(

S
tr

in
g
)

[
3
6
2
9
/9

1
6
7
 |
 −

0
,0

5
5
 |
 −

0
,0

5
5
 |
 2

,7
8
%

]

9
1

6
7

v
ie

w
It
e
m

()
[
3
2
8
2
/6

3
2
1
 |
 −

0
,0

0
4
 |
 −

0
,0

0
4
 |
 2

,9
2
%

]

g
e
tI
te

m
(S

tr
in

g
)

[
4
2
7
9
/8

4
3
3
 |
 −

0
,0

0
6
 |
 −

0
,0

0
6
 |
 2

,9
2
%

]

6
3

2
1

n
e
w

O
rd

e
r(

)
[
5
1
6
/1

9
6
1
 |
 −

0
,0

0
3
 |
 −

0
,0

0
3
 |
 2

,9
3
%

]

in
s
e
rt

O
rd

e
r(

O
rd

e
r)

[
4
8
4
/9

8
1
 |
 −

0
,0

9
6
 |
 −

0
,0

9
6
 |
 2

,6
5
%

]

9
8

1

n
e
w

O
rd

e
rF

o
rm

()
[
9
3
8
/1

9
5
6
 |
 −

0
,1

4
6
 |
 −

0
,1

4
6
 |
 2

,5
1
%

]
a
d
d
It
e
m

T
o
C

a
rt

()
[
1
1
0
7
/2

1
7
0
 |
 −

0
,0

2
9
 |
 −

0
,0

2
9
 |
 2

,8
5
%

]

2
1

1
2

is
It
e
m

In
S

to
c
k
(S

tr
in

g
)

[
1
1
5
1
/2

1
1
2
 |
 0

,0
2
9
 |
 0

,0
2
9
 |
 3

,0
2
%

]

2
1

1
2

1
1

3
4

9
g
e
tI
te

m
L
is

tB
y
P

ro
d
u
c
t(

S
tr

in
g
,i
n
t,
in

t)
[
9
1
6
7
/9

1
6
7
 |
 0

,9
9
5
 |
 0

,9
9
5
 |
 5

,8
6
%

]
8

4
3

3
g
e
tP

ro
d
u
c
tL

is
tB

y
C

a
te

g
o
ry

(S
tr

in
g
,i
n
t,
in

t)
[
6
4
0
2
/1

2
4
3
7
 |
 −

0
,0

5
0
 |
 −

0
,0

5
0
 |
 2

,7
9
%

]

1
2

4
3

7
9

1
6

7

2
1

1
2

9
1

6
7

1
2

4
3

7

9
8

1

s
ig

n
o
n
()

[
4
9
4
/1

0
8
8
 |
 −

0
,1

2
3
 |
 −

0
,1

2
3
 |
 2

,5
8
%

]

1
0

8
8

g
e
tA

c
c
o
u
n
t(

S
tr

in
g
,S

tr
in

g
)

[
5
2
3
/1

0
8
8
 |
 −

0
,0

8
8
 |
 −

0
,0

8
8
 |
 2

,6
8
%

]

1
0

8
8

9
8

0

1
0

8
8

1
1

3
4

9
9

1
6

7
6

3
2

1
1

9
6

1
1

9
5

6
2

1
7

0
1

0
8

8

1
0

8
8

Figure 5.1: Result graph of an analysis using the trivial algorithm. A programming fault
has been injected in getItemListByProduct(String,int,int).

86

5.2 Limitations

V
ir
tu

a
l
M

a
c
h

in
e

 ’
ti
e

r’
[

4
1

4
7

2
/6

1
0

9
8

 |
 0

,0
1

 |
 2

5
,0

3
%

]

p
e
rs

is
te

n
c
e
.s

q
lm

a
p
d
a
o
.I
te

m
S

q
lM

a
p
D

a
o

[
6
2
6
4
/8

4
3
3
 |
 0

,0
0
1
 |
 6

,6
5
%

]
p
e
rs

is
te

n
c
e
.s

q
lm

a
p
d
a
o
.P

ro
d
u
c
tS

q
lM

a
p
D

a
o

[
6
5
8
6
/9

1
6
7
 |
 0

,0
1
1
 |
 6

,7
2
%

]

s
e
rv

ic
e
.h

e
s
s
ia

n
.s

e
rv

e
r.

C
a
ta

lo
g
S

e
rv

ic
e

[
2
8
6
2
2
/4

3
4
9
8
 |
 0

,0
0
1
 |
 6

,6
6
%

]

V
ir
tu

a
l
M

a
c
h

in
e

 ’
k
lo

tz
’

[
1

1
0

4
9

6
/1

9
6

3
1

0
 |
 0

,0
2

 |
 2

5
,2

8
%

]

s
e
rv

ic
e
.h

e
s
s
ia

n
.c

lie
n
t.
C

a
ta

lo
g
S

e
rv

ic
e

[
4
6
4
6
9
/7

4
2
6
9
 |
 0

,0
5
3
 |
 7

,0
0
%

]

o
rg

.a
p
a
c
h
e
.s

tr
u
ts

.a
c
ti
o
n
.A

c
ti
o
n
S

e
rv

le
t

[
4
1
8
2
7
/8

5
9
6
0
 |
 −

0
,0

2
6
 |
 6

,4
8
%

]

p
re

s
e
n
ta

ti
o
n
.C

a
rt

B
e
a
n

[
1
1
0
7
/2

1
7
0
 |
 0

,0
0
0
 |
 6

,6
5
%

]
p
re

s
e
n
ta

ti
o
n
.A

c
c
o
u
n
tB

e
a
n

[
4
9
4
/1

0
8
8
 |
 −

0
,0

0
0
 |
 6

,6
5
%

]

s
e
rv

ic
e
.h

e
s
s
ia

n
.c

lie
n
t.
A

c
c
o
u
n
tS

e
rv

ic
e

[
5
2
3
/1

0
8
8
 |
 0

,0
0
0
 |
 6

,6
5
%

]
s
e
rv

ic
e
.h

e
s
s
ia

n
.c

lie
n
t.
O

rd
e
rS

e
rv

ic
e

[
4
8
4
/9

8
1
 |
 −

0
,0

0
0
 |
 6

,6
5
%

]

p
re

s
e
n
ta

ti
o
n
.C

a
ta

lo
g
B

e
a
n

[
1
8
1
3
8
/2

6
8
3
7
 |
 0

,0
0
3
 |
 6

,6
7
%

]
p
re

s
e
n
ta

ti
o
n
.O

rd
e
rB

e
a
n

[
1
4
5
4
/3

9
1
7
 |
 −

0
,0

0
0
 |
 6

,6
5
%

]

$

d
o

G
e

t(
H

tt
p

S
e

rv
le

tR
e

q
u

e
s
t,

H
tt

p
S

e
rv

le
tR

e
s
p

o
n

s
e

)
[

2
3

5
5

1
/3

9
8

2
4

 |
 0

,0
1

7
 |
 −

0
,1

7
2

 |
 2

,4
6

%
]

3
8
8
4
4

d
o

P
o

s
t(

H
tt

p
S

e
rv

le
tR

e
q

u
e

s
t,

H
tt

p
S

e
rv

le
tR

e
s
p

o
n

s
e

)
[

1
5

2
3

/3
1

5
6

 |
 −

0
,0

0
6

 |
 −

0
,1

5
0

 |
 2

,5
3

%
]

2
0
6
8

p
ro

c
e

s
s
(H

tt
p

S
e

rv
le

tR
e

q
u

e
s
t,

H
tt

p
S

e
rv

le
tR

e
s
p

o
n

s
e

)
[

1
6

7
5

3
/4

2
9

8
0

 |
 −

0
,1

0
0

 |
 −

0
,1

5
1

 |
 2

,5
2

%
]

3
9
8
2
4 3

1
5
6

g
e

tI
te

m
(S

tr
in

g
)

[
6

2
6

4
/8

4
3

3
 |
 0

,0
4

4
 |
 0

,0
2

4
 |
 3

,0
4

%
]

g
e

tP
ro

d
u

c
t(

S
tr

in
g

)
[

6
5

8
6

/9
1

6
7

 |
 0

,0
3

5
 |
 0

,1
0

4
 |
 3

,2
8

%
]

g
e

tC
a

te
g

o
ry

(S
tr

in
g

)
[

8
0

6
5

/1
1

3
4

9
 |
 0

,0
2

6
 |
 0

,0
1

7
 |
 3

,0
2

%
]

g
e

tP
ro

d
u

c
tL

is
tB

y
C

a
te

g
o

ry
(S

tr
in

g
,i
n

t,
in

t)
[

6
6

9
2

/1
2

4
3

7
 |
 −

0
,0

0
1

 |
 0

,0
0

0
 |
 2

,9
7

%
]

g
e

tI
te

m
(S

tr
in

g
)

[
5

8
9

4
/8

4
3

3
 |
 0

,0
2

5
 |
 0

,0
1

7
 |
 3

,0
2

%
]

8
4
3
3

is
It

e
m

In
S

to
c
k
(S

tr
in

g
)

[
1

4
3

7
/2

1
1

2
 |
 0

,0
4

6
 |
 0

,0
1

6
 |
 3

,0
2

%
]

g
e

tP
ro

d
u

c
t(

S
tr

in
g

)
[

6
5

3
4

/9
1

6
7

 |
 0

,0
3

7
 |
 0

,1
0

6
 |
 3

,2
9

%
]

9
1
6
7

g
e

tI
te

m
(S

tr
in

g
)

[
4

2
7

9
/8

4
3

3
 |
 −

0
,0

0
0

 |
 0

,0
1

6
 |
 3

,0
2

%
]

8
4
3
3

g
e

tC
a

te
g

o
ry

(S
tr

in
g

)
[

6
3

0
9

/1
1

3
4

9
 |
 0

,0
0

0
 |
 0

,0
0

2
 |
 2

,9
8

%
]

1
1
3
4
9

g
e

tP
ro

d
u

c
tL

is
tB

y
C

a
te

g
o

ry
(S

tr
in

g
,i
n

t,
in

t)
[

6
4

0
2

/1
2

4
3

7
 |
 −

0
,0

0
2

 |
 −

0
,0

0
0

 |
 2

,9
7

%
]

1
2
4
3
7

g
e

tP
ro

d
u

c
t(

S
tr

in
g

)
[

3
6

2
9

/9
1

6
7

 |
 −

0
,0

1
6

 |
 0

,0
6

1
 |
 3

,1
5

%
]

9
1
6
7

g
e

tI
te

m
L

is
tB

y
P

ro
d

u
c
t(

S
tr

in
g

,i
n

t,
in

t)
[

9
1

6
7

/9
1

6
7

 |
 0

,9
9

5
 |
 0

,9
9

5
 |
 5

,9
3

%
]

is
It

e
m

In
S

to
c
k
(S

tr
in

g
)

[
1

1
5

1
/2

1
1

2
 |
 0

,0
0

1
 |
 0

,0
0

3
 |
 2

,9
8

%
]

2
1
1
2

g
e

tP
ro

d
u

c
tL

is
tB

y
C

a
te

g
o

ry
(S

tr
in

g
)

[
6

3
6

5
/1

2
4

3
7

 |
 −

0
,0

0
3

 |
 0

,0
1

6
 |
 3

,0
2

%
]

1
2
4
3
7

g
e

tI
te

m
L

is
tB

y
P

ro
d

u
c
t(

S
tr

in
g

)
[

9
1

6
7

/9
1

6
7

 |
 0

,9
9

5
 |
 0

,7
1

7
 |
 5

,1
0

%
]

9
1
6
7

9
8
0

1
0
8
8

a
d

d
It

e
m

T
o

C
a

rt
()

[
1

1
0

7
/2

1
7

0
 |
 −

0
,0

0
1

 |
 0

,0
0

1
 |
 2

,9
7

%
]

2
1
7
0

s
ig

n
o

n
()

[
4

9
4

/1
0

8
8

 |
 −

0
,0

1
6

 |
 −

0
,0

1
3

 |
 2

,9
3

%
]

1
0
8
8

v
ie

w
P

ro
d

u
c
t(

)
[

9
0

9
4

/9
1

6
7

 |
 0

,8
0

2
 |
 0

,1
5

1
 |
 3

,4
2

%
]

9
1
6
7

v
ie

w
It

e
m

()
[

3
2

8
2

/6
3

2
1

 |
 −

0
,0

0
0

 |
 0

,0
0

2
 |
 2

,9
8

%
]

6
3
2
1

v
ie

w
C

a
te

g
o

ry
()

[
5

7
6

2
/1

1
3

4
9

 |
 −

0
,0

0
2

 |
 −

0
,0

0
0

 |
 2

,9
7

%
]

1
1
3
4
9

n
e

w
O

rd
e

rF
o

rm
()

[
9

3
8

/1
9

5
6

 |
 −

0
,0

1
7

 |
 −

0
,0

1
4

 |
 2

,9
3

%
]

1
9
5
6

n
e

w
O

rd
e

r(
)

[
5

1
6

/1
9

6
1

 |
 −

0
,0

0
0

 |
 0

,0
0

3
 |
 2

,9
8

%
]

1
9
6
1

2
1
1
2

2
1
1
2

1
0
8
8

g
e

tA
c
c
o

u
n

t(
S

tr
in

g
,S

tr
in

g
)

[
5

2
3

/1
0

8
8

 |
 −

0
,0

0
7

 |
 0

,0
0

1
 |
 2

,9
8

%
]

1
0
8
8

1
0
8
8

in
s
e

rt
O

rd
e

r(
O

rd
e

r)
[

4
8

4
/9

8
1

 |
 −

0
,0

0
7

 |
 −

0
,0

0
5

 |
 2

,9
6

%
]

9
8

1

9
1
6
7

9
1
6
7

6
3
2
1

1
1
3
4
9

1
1
3
4
9

9
8
1

Figure 5.2: Result graph of an analysis using the advanced algorithm. The same experi-
ment data is used as in the previous figure.

87

Chapter 5 Conclusions

Looking at the percentage ratings in general, the results are not as clear as expected.
Instead of displaying e.g. “component A contains the cause with 80% probability”, the
differences among the elements are usually much smaller, like “7.1% for component X,
6.9% for Y”. This applies to all algorithm variants, and there is no solution yet – if a
solution is actually required.
Subject of another observation, especially for our distributed JPetStore and its moni-

toring instrumentation, is the low cross-linking between the elements: Most of the depen-
dency paths go directly and one-way through the application. Referring to the advanced
algorithm in particular, during development, the assumption that anomalies propagate
fan-shaped towards the top of the structure has been an important part. With the low
cross-linking, the related parts of the algorithm are hardly used, because they draw very
few conclusions if singular connections up or down an element are detected. Thus, it is
assumed that the advanced algorithm cannot show its strengths in the current experiment
environment, because not all of its aspects can be thoroughly tested.
Although the Correlator does not rely on training, the advanced algorithm seems to

take an advantage of that however, due to its various parameters. Depending on the
desired precision, e.g. whether the graphs are by a human administrator in any event, or
whether the rating functions should be nearly perfect already, an adaption and training
of the settings and parameters to a certain environment might improve the results.

It is hard to judge the quality of the anomaly detector. At least for the detection of
the programming faults injected in our experiments, it seems to work very well. For the
fault injection experiments on deployment context, the results were disappointing. It is
supposed that the quality of the Correlator’s results highly depends on the quality of the
anomaly detector’s results.
Furthermore, it can be assumed that the examination of timing behavior alone does

not suffice for a comprehensive analysis of a failing software system, but it might be a
complement to existing diagnosis methods that focus on the observation of other system
characteristics.

Due to limited experiment time, the results are restricted to one application and few
fault scenarios. It has not been found out whether the “optimized” parameters of the
advanced algorithm are suitable for our testing environment only, and how the whole
process performs when applied to other architectures.

88

5.3 Future Work

5.3 Future Work
Besides doing much more and thorough testing and training of the algorithm parameters
to special situations, or for universal appliance, a few ideas came up throughout the
development of the thesis to enhance the concept.
The following list contains ideas to improve the correlation process.

• A different strategy which have been decided not to implement in the thesis is
to iteratively apply an attempt for backwards propagation. Even more close to
neural networks and cellular automatons, a series of uniform calculations could be
repeatedly performed on the structure to step-by-step “reconstruct” the causing
situation. The main problem is to decide how often the repetition should run, or
to determine a distinct stop condition. Will this lead to a steady state?

• Another perspective within the algorithms would be to not consider the nodes in
the calling dependency graphs, but instead the edges – the messages.

• In addition to the dependency relations, complex patterns in the time and space of
the executions could be analyzed by special pattern recognition algorithms, compa-
rable to fingerprinting in intrusion detection systems, or in acoustic scene analysis.
For example, with the programming fault experiment No. 3, where an empty list
is returned instead of one generated from a method call, it is currently disregarded
that in this scenario, a whole operation is never executed compared to the training
data. This gap should be somehow noticed – maybe under the responsibility of the
anomaly detector – to increase the anomaly rating of the operation that otherwise
called the missing one.
Furthermore, a pattern recognition could consider special configurations like “all
operations within a single deployment context show significant anomalies”, or “the
number of anomalous connections between two distinct deployment contexts is
unusual high”.
The chronology of events, explicitly excluded up to now, could indeed provide
evidence for the relevance or irrelevance of reported anomalies. On execution level,
perhaps a burst recognition could be the basis for a “temporal correlation”.
Instead of having an algorithm developer to learn the meaning and effects of prop-
agation, this might somehow become part of an automated process.

• Pursuing the idea of similarities to neural networks, maybe a good result can be
achieved with a feedback mechanism and separately controllable thresholds inte-
grated into our dependency graphs – without complex rules, yet with some training.

• One idea is directed towards a simulation approach, as a simpler alternative to pat-
tern recognition. Based on “what if . . . ” considerations, a presumed anomaly could
be calculated out of the application (not backwards, like in the current prototype,
but forwards). Then the number of remaining anomaly appearances is checked and
compared with other attempts.

89

Chapter 5 Conclusions

Other ideas tend to improve the evaluation process:

• The problems with the anomalies on deployment context level described in Sec-
tion 4.4.2 (pg. 63) indicate that the anomaly detector might not work properly.
Since this is concentrated on the host jpet4 (“tier”), some debugging effort might
make sense at these two points.

• To check the assumptions about inter-element linkage, a series of experiments with
extended monitoring could be set up. Additionally, tests with another application
seem to be useful, since the complexity of the JPetStore is not supposed to be a
perfect representative for real-life applications.

• Alternative metrics might be developed in order to benchmark the estimation of
the Correlator in comparison to the expected result when knowing the real cause
of failure. For instance, Gruschke [1998a] uses the length of the path from an event
to its cause as a metric for the quality of failure diagnosis.

Up to now, the focus of the efforts is on the inspection of a system after a failure has
happened. As classified in the introduction, the approach is settled in the category of
fault detection and fault removal, but it can also be considered a method of dynamic
validation: If used with non-production systems, administrators might use their own
workload profiles to perform fault localization in their testing environment. Additionally
it might be used for regression tests – Myers [2001, p. 14] even claims that “the probability
for the existence of further errors in a certain section of a program is proportional to the
number of errors already discovered in this section” – where the monitoring would then
be concentrated at suspicious components.
Obviously, an extension to a continuous observation and analysis at runtime would be

a reasonable advancement.
Finally, an improved user interface would be helpful for evaluation and real-life usage.

Instead of exporting the graphs with dot, they could be displayed within a graphical
interface along with switches to instantly change the parameters for correlation as well
as for presentation. Most of the settings listed in Section B.3 could be implemented as
check boxes, radio buttons, or scroll bars.
As a bonus, features like XML import and export would meet the current trends.

90

Appendix A

Experiment Setup Details

A.1 Experiment Activities
Figure A.1 shows a thorough diagram of all activities around the experiments. The
Environment Setup at the top of the graph is done only once. The middle section is
executed for every Experiment, preparing e.g. individual fault injection variants. The
centered Execution shows the tasks of our main three nested Ant scripts that control one
or more experiment runs fully automated. The Cleanup phase is done manually again
as necessary. Finally, the Analysis is done by Tpan, and the activities represent menu
items within the console client that can again be controlled through a script.

A.2 Instrumentation of the JPetStore
The following JPetStore methods have been instrumented by Tpmon monitoring probes
for the current experiments. There are some other methods that are instrumented, too,
but are never called in our setup. The list is ordered alphabetically by the fully qualified
class names.

• com.ibatis.jpetstore.persistence.sqlmapdao.AccountSqlMapDao
getAccount(String username, String password)

• com.ibatis.jpetstore.persistence.sqlmapdao.ItemSqlMapDao
getItem(String itemId)
getItemListByProduct(String productId)

• com.ibatis.jpetstore.persistence.sqlmapdao.OrderSqlMapDao
insertOrder(Order order)

• com.ibatis.jpetstore.persistence.sqlmapdao.ProductSqlMapDao
getProduct(String productId)

• com.ibatis.jpetstore.presentation.AccountBean
signon()

• com.ibatis.jpetstore.presentation.CartBean
addItemToCart()

91

Appendix A Experiment Setup Details

re
b
o
o
tN

o
d
e

s

s
ta

rt
T

im
e
S

y
n
c
e
r

s
ta

rt
T

o
m

c
a
ts

s
ta

rt
T

e
s
t

fe
tc

h
R

e
s
u
lt
s

s
to

p
T

im
e

S
y
n
c
e
r

c
le

a
n

in
it

p
re

a
m

b
le

.r
u

n

w
a

rm
u

p
.r

u
n

a
n

o
m

a
lie

s
.s

ta
rt

d
b

.i
n

it

tp
m

o
n
.d

is
a

b
le

D
e
b
u

g

tp
m

o
n

.e
n

a
b

le
M

o
n

ito
ri
n

g

tp
m

o
n
.s

e
tE

x
p

Id

s
y
s
s
ta

t.
s
ta

rt

jm
e
te

r.
ru

n
T

e
s

tP
la

n

s
y
s
s
ta

t.
s
to

p

tp
m

o
n
.d

is
a

b
le

D
e
b
u

g

tp
m

on
.d

is
ab

le
M

on
ito

rin
g

lo
g

s
.f
e

tc
h

re
p

o
rt

s
to

p
T

o
m

c
a
ts

m
a

in
.r

u
n

E
x
e
c
u
ti
o
n

E
n
v
ir
o
n
m

e
n
t
S

e
tu

p

P
re

p
a
ra

ti
o
n

C
le

a
n
u
p

A
n
a
ly

s
is

D
e
p
lo

y
 J

P
e
tS

to
re

In
te

g
ra

te
 T

p
m

o
n

S
e
tu

p
 J

M
e
te

r
S

e
tu

p
 t

h
e
 d

a
ta

b
a

s
e

In
s
ta

ll
T

p
a

n

L
o

a
d

 m
o
n

it
o

ri
n
g

d
a

ta
R

e
m

o
v
e
 w

a
rm

−
u
p

C
re

a
te

 m
e
s
s
a
g
e

tr
a

c
e

s
P

e
rf

o
rm

 c
o

n
te

x
t

tr
e

e
 a

n
a

ly
s
is

In
it
ia

liz
e
 a

n
o

m
a

ly
d

e
te

c
to

r
A

p
p

ly
 a

n
o

m
a
ly

d
e
te

c
to

r
R

u
n
 C

o
rr

e
la

to
r

E
v
a
lu

a
te

 r
e

s
u

lt
s

S
e

le
c
t

p
a

ra
m

e
te

rs

A
c
ti
v
a
te

 f
a

u
lt
s

D
e

p
lo

y
 J

P
e

tS
to

re

E
x
e
c
u

te
 A

n
t

s
c
ri
p

t

S
a
v
e
 l
o
g

 f
ile

F
e

tc
h

 r
e

s
u

lt
s

D
e

a
c
ti
v
a

te
 f
a

u
lt
s

R
e
−

d
e
p

lo
y
 J

P
e

tS
to

re

E
x
p
e
ri
m

e
n
t

Figure A.1: Activity diagram of the experiments.

92

A.2 Instrumentation of the JPetStore

• com.ibatis.jpetstore.presentation.CatalogBean
viewCategory()
viewItem()
viewProduct()

• com.ibatis.jpetstore.presentation.OrderBean
newOrder()
newOrderForm()

• com.ibatis.jpetstore.service.hessian.client
AccountService.getAccount(String username, String password)

• com.ibatis.jpetstore.service.hessian.client.CatalogService
getCategory(String categoryId)
getItem(String itemId)
getItemListByProduct(String productId)
getItemListByProduct(String productId, int skipResults,

int maxResults)
getProduct(String productId)
getProductListByCategory(String categoryId)
getProductListByCategory(String categoryId, int skipResults,

int maxResults)
isItemInStock(String itemId)

• com.ibatis.jpetstore.service.hessian.client.OrderService
insertOrder(Order order)

• com.ibatis.jpetstore.service.hessian.server.AccountService
getAccount(String username, String password)

• com.ibatis.jpetstore.service.hessian.server.CatalogService
getCategory(String categoryId)
getItem(String itemId)
getItemListByProduct(String productId, int skipResults,

int maxResults)
getProduct(String productId)
getProductListByCategory(String categoryId, int skipResults,

int maxResults)
isItemInStock(String itemId)

• com.ibatis.jpetstore.service.hessian.server.OrderService
getNextId(String key)
insertOrder(Order order)

93

Appendix A Experiment Setup Details

• org.apache.struts.action.ActionServlet
doGet(HttpServletRequest request, HttpServletResponse response)
doPost(HttpServletRequest request, HttpServletResponse response)
process(HttpServletRequest request, HttpServletResponse response)

A.3 Preparations for Fault Injection
The following list contains the actions that have been done in preparation for the fault
injection experiments, matching the activities “Activate faults” and “Deploy JPetStore”
in Figure A.1.

• In order to minimize the influence on the experiment environment that is also
used for other examinations, the source code of the JPetStore has been copied
from “JPetStore-5.0-distributed-Hessian” to “JPetStore-5.0-distributed-Hessian-
Injection”.

• Accordingly, in the build.xml for deployment, “-injection” is appended to the
WAR files to distinguish them from the unmodified files. As a side effect, this
allows to run both variants in parallel.

• Likewise, “-injection” is appended to the paths in the build.properties so the
services can interact with each other.

• After a change in the source code, ant deploy-all-instrumented is run in
JPetStore-5.0-distributed-Hessian-Injection on jpet1.

94

Appendix B

Correlator Plug-in Usage

B.1 Package Content
The package org.trustsoft.tpmon.logAnalysis.plugins.CorrelatorPlugin con-
tains the following Java classes in alphabetical order. The descriptions are essentially
equal to the Javadoc descriptions.

Algorithm is the abstract base class for all algorithms that are involved in fault lo-
calization. Optionally, it can be configured through properties. Algorithm im-
plementations must provide a no-argument constructor to be initialized through
Class.newInstance().

AlgorithmAdvanced is an advanced implementation of algorithms to aggregate and cor-
relate information in a dependency graph to estimate the cause of failure. Param-
eters are controlled through a properties file.

AlgorithmSimple is a simple implementation of functions to aggregate and correlate
information in a dependency graph to estimate the cause of failure.

AlgorithmTrivial is the most simple implementation we can imagine: Without corre-
lation, it only performs a simple arithmetic mean calculation on each structure
element, independent of any other elements. This seems to be only useful for quick
visualization of the “original” state of the application, and not for locating the
cause of failure.

Application stores a hierarchically connected structure of all elements (operations, com-
ponents, deployment contexts) of an application under analysis. The operations
itself hold sets of their respective executions with anomalies. Methods are provided
to build up the structure, to initiate evaluation, and to present the results.

CorrelatorPlugin is the controlling class of the plug-in, and contains the interface to
the environment. There are public methods to (1) build up the dependency graph,
(2) integrate anomaly information, (3) evaluate the cause of failure, (4) output the
results in text form, and (5) visualize the results as Graphviz dot file.

95

Appendix B Correlator Plug-in Usage

DistanceAndWeight is a small helper class that stores some attributes for remote
anomaly mean calculation to be used in a Map which would otherwise require a
multi-column table.

DotFactory provides a collection of static methods to compile Graphviz dot elements
from String attributes and properties. These elements may be compiled to com-
plete dot files externally, or directly exported to various image file formats.

Experiment stores properties and results used for batch runs. The properties are in-
tended to overwrite the default properties.

PresentationDot provides some static methods to present a dependency hierarchy of
structure elements in Graphviz Dot form. Parameters are controlled through prop-
erties file.

PresentationText provides some static methods to present some structure elements in
nice and detailed text form.

PropertiesExtended is an extended version of the standard Properties. Additional
methods are provided to fetch Integer and Double objects, and to check them for
consistency.

PseudoColor provides methods to manage pseudo colors. Pseudo colors are calculated
by mapping the values of data sets to a pre-defined spectrum of colors. For example,
a height map could be visualized in grey scale, or a temperature map could be drawn
in cold-to-warm colors. In the Correlator, the colors are based on the anomaly cause
ratings of the structure elements.

SampleAndWeight is a small helper structure for sample and weight. Two Doubles are
sticked together to allow combined ordering by one of them.

StructureComponent implements unique functionality for components, which work as
normal StructureElements otherwise. Components usually have a Structure←↩
DeploymentContext as parent, they have StructureOperations as children, and
they are linked among each other with a uses relation.

StructureDeploymentContext implements unique functionality for deployment con-
texts, which work as normal StructureElements otherwise. Deployment contexts
usually have no parent, they have StructureComponents as children, and they are
linked among each other with a uses relation.

StructureElement serves as a super class for all classes that are part of the dependency
structure, and that form the nodes of the dependency graph, respectively. Methods
are provided to build up and access the dependency structure. Instances of this
class can be automatically sorted by their cause rating.

96

B.2 Tpan Integration

StructureExecution implements unique functionality for executions, which work as
normal StructureElements otherwise. Executions usually have a Structure←↩
Operation as parent, they have no children, and are not linked among each other.

StructureOperation implements unique functionality for operations, which work as
normal StructureElements otherwise. Operations usually have a Structure←↩
Component as parent, they have StructureExecutions as children, and they are
linked among each other with a uses relation.

Util provides a bunch of useful static functions for use in different places of the plug-in.
Along with various constants, there are methods for debug output, for mathematics,
for String manipulation, and for file system access.

B.2 Tpan Integration

For communication with the environment – usually Tpan –, the Correlator plug-in has
some public methods. Most other methods have package-protected access rights.

B.2.1 Machine Interface

First, the CorrelatorPlugin constructor has to be called to initialize the plug-in. It
loads the properties file, applies override properties if available, and opens the log file.
In order to load the dependency data of the application under analysis into the plug-

in, the methods processMessageTrace or processMessageTraces can be called in any
order. Then integrateExecutions is used to load the anomaly information into the
structure.
To start the evaluation, execute evaluateApplication. Again, override properties

are accepted.
It is recommended to run the check method afterwards.
To fetch the results, the plug-in provides three methods, one for each hierarchy level,

to get Lists of the StructureElements, sorted in descending order of their cause rating:

List<StructureElement> getOperationsOrdered()
List<StructureElement> getComponentsOrdered()
List<StructureElement> getDeploymentContextsOrdered()

The method getResultsCSVLine can be invoked to get some hard-coded results for
appending a line to a CSV file. Usually, it is used in combination with the experiment
batch file mechanism.
On finish, closeLogFile should be called.

97

Appendix B Correlator Plug-in Usage

B.2.2 Human Interface
Three groups of methods are focused on providing the results in a human readable form.

1. The results can be printed to an arbitrary PrintStream – e.g. System.out for print-
ing on command line interface – via printResultTable and printComponents←↩
SortedByCauseRating.

2. The method writeDotFile instantly exports the dependency structure to the spec-
ified file in Graphviz dot syntax, using the presentation properties from the plug-in.

3. To create image files, exportGraphicFromDotFile can be called with a filename
and the shortened common file type that is known to dot – e.g. “ps” for PostScript.
The export is done by invoking the dot command in a shell.
If more than one image file type is to be created from the same results, the wrap-
per method exportGraphicsFromDotFile might be useful that takes an arbitrary
number of file types in a colon-separated list.
Finally, for creating large groups image files via an experiment batch file,
writeGraphicsFiles uses a file prefix (followed e.g. by the experiment identifier)
as well as the list of image file types from the plug-in properties.

B.3 Correlator Configuration
The Correlator plug-in can be thoroughly configured through Java Properties. These
parameters are used as long as no overrides are specified via special experiment instruc-
tions.

B.3.1 General
The correlator.properties contains some basic parameters for experimentation and
debugging. The detail level for the PrintStream output, and for the log file can be set,
and the file name to append the log messages to. Percentage values can be specified that
are used to get a first impression after loading the data – these are cosmetic only and
may become deprecated. An important setting is the choice of the correlation algorithm:
The name of an existing Java class has to be specified that will be dynamically loaded.
For the output, an image file prefix can be set, as well as a colon-separated list of default
file types for export.

B.3.2 Presentation
In the presentation.properties, a list of visual features for the dependency graphs
can be switched on or off. The graph may contain a caption, an explanation text,
execution anomaly score histograms, pseudo color shades reflecting the cause ratings, a

98

B.3 Correlator Configuration

legend explaining the colors, details of each rating (mainly for debugging purpose), edge
weights, deployment context elements, component elements, and operation elements.
Most of these can be arbitrarily combined. For instance, a graph may contain deployment
contexts and operations, but no components.
For the color shades, there is an option to stretch them to use the full spectrum from

green to red to visually rise the contrast. Otherwise it may happen that all elements are
yellow, if the anomaly scores predominantly show “normal”.
The edge weights can be switched between absolute (number of executions) and relative

(percentages).
To save space, a prefix can be specified to be removed from each element name.

For instance, in our current examinations, all elements start with the package name
com.ibatis.jpetstore.
For the histograms, the dimensions can be specified in pixels, as well as the file type

(as extension, like “png”).
The remaining settings concern the attributes of the elements. There are font families,

font sizes, font colors, frame colors, and some special colors for highest-rated elements,
and for the “root” element.

B.3.3 Algorithm
Currently, only the advanced algorithm is configured via Properties. The other algo-
rithm variants do not need them, although the simple algorithm is prepared to use them.
The following five settings from the algorithm.advanced.properties equal those that
have been examined in Section 4.5 (pg. 67).

1. The input-output-relation factor can be set as a decimal. A value smaller than 1
means that the incoming connections have more influence, and vice versa, while a
value of 1 means this feature is practically disabled.

2. The edge weight method for correlation on operation level can be switched between
absolute and relative.

3. Three mean methods (power mean, median, and maximum) can be selected in-
dependently for aggregation on all three hierarchy levels, and for correlation on
operation level.

4. For each of the four power mean possibilities, an independent exponent can be
set to emphasize outliers, or to reduce their influence. A value of 1.0 means to
practically switch off the power mean, equating it with the arithmetic mean.

5. In order to enhance or weaken the influence of distance in correlation on operation
level, the “neighborhood mean distance exponent” is specified that is obviously
deactivated by setting it to 1.0 again.

99

Appendix B Correlator Plug-in Usage

B.4 Experiment Instructions
Before the start of the Correlator plug-in, the surrounding method in Tpan tries to load
experiment instructions. An experiment in this context consists of a name at least, and
can have a list of override parameters. The name will be used for writing the file names
of the dot graphs as well as the results CSV files. The parameters, if the same keys are
used as in the properties files, can overwrite almost any properties. This is useful to
repeat an evaluation with the same data using slightly different parameters, e.g. special
algorithm configurations, or different graph options.
In the current implementation, first one experiment is loaded from the properties of

Tpan. If that fails, the CSV-like experiment batch file is loaded, that may contain any
number of experiments, one per line. Figure 3.18 (pg. 46) shows an example.
If there is more than one line in the batch file, the Correlator plug-in alone is re-

peatedly run for each experiment without having to reload the data, or to repeat the
pre-processing by other plug-ins. Details of the syntax can be found inside of the
correlator-experiments.csv.example file in the root directory of Tpan.
If no instructions are found, a default experiment without override parameters is cre-

ated and loaded with the Correlator plug-in.

B.5 New Algorithms
Since the Correlator plug-in is equipped with a class loader, new algorithms could be
loaded at runtime.
To create a new algorithm, the abstract Algorithm class has to be extended. This way,

it has to implement the four evaluations methods – aggregation on all three hierarchy
levels, and correlation on operation level. Basic functionality is available to manage
the name, and to load and check the optional properties. Additionally, a method is
included that performs a simple arithmetic mean calculation of the cause ratings of
the specified StructureElement’s children. It is recommended to start with a copy of
AlgorithmSimple though, and to switch its parts as necessary.

100

Bibliography
Stephen Adler. The Slashdot Effect, an analysis of three internet publications. In Linux
Gazette, volume 38, March 1999. URL http://linuxgazette.net/issue38/adler1.
html. Last visited August 10, 2008.

Manoj K. Agarwal, Karen Appleby, Manish Gupta, Gautam Kar, Anindya Neogi, and
Anca Sailer. Problem determination using dependency graphs and run-time behavior
models. In Akhil Sahai and Felix Wu, editors, Proc. of 15th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management (DSOM 2004), vol-
ume 3278 of Lecture Notes in Computer Science (LNCS), pages 171–182. Springer,
November 2004.

ArchWiki. Cpufrequtils – Arch Linux Wiki. Published on-line, July 2008. URL http:
//wiki.archlinux.org/index.php/Cpufrequtils. Last visited August 10, 2008.

Algirdas Anthony Avižienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, 2004.

Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian Zhou.
Evaluating static analysis defect warnings on production software. In Proceedings of
the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE ’07), San Diego, California, USA, June 2007. ACM. URL
http://findbugs.cs.umd.edu/papers/FindBugsExperiences07.pdf. Last visited
August 10, 2008.

Richard M. Bailey and Richard C. Soucy. Performance and availability measurement of
the IBM information network. IBM Systems Journal, 22(4):404–416, 1983.

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. From Natural to Artificial Swarm
Intelligence. Santa Fe Institute studies in the sciences of complexity. Oxford University
Press, New York, NY, USA, September 1999.

Dominik Brodowski and Sebastian Henschel. Linux/ACPI – documentation: The
/proc/acpi/processor subdirectory. Published on-line, 2002, 2004. URL http:
//acpi.sourceforge.net/documentation/processor.html. Last visited August 10,
2008.

David W. Cantrell and Eric W. Weisstein. Power mean. Published on-line, December
2003. URL http://mathworld.wolfram.com/PowerMean.html. From MathWorld –
A Wolfram Web Resource. Last visited August 10, 2008.

101

http://linuxgazette.net/issue38/adler1.html
http://linuxgazette.net/issue38/adler1.html
http://wiki.archlinux.org/index.php/Cpufrequtils
http://wiki.archlinux.org/index.php/Cpufrequtils
http://findbugs.cs.umd.edu/papers/FindBugsExperiences07.pdf
http://acpi.sourceforge.net/documentation/processor.html
http://acpi.sourceforge.net/documentation/processor.html
http://mathworld.wolfram.com/PowerMean.html

Bibliography

Thilo Focke. Performance Monitoring von Middleware-basierten Applikationen. Master’s
thesis, Carl von Ossietzky Universität Oldenburg, Germany, March 2006.

Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with dot,
January 2006. URL http://graphviz.org/Documentation/dotguide.pdf. Last vis-
ited August 10, 2008.

Simon Giesecke, Matthias Rohr, and Wilhelm Hasselbring. Software-Betriebs-Leitstände
für Unternehmensanwendungslandschaften. In Proceedings of the Workshop “Software-
Leitstände: Integrierte Werkzeuge zur Softwarequalitätssicherung”, volume P-94 of
Lecture Notes in Informatics, pages 110–117. Gesellschaft für Informatik, October
2006.

Sebastien Godard. Sysstat. Published on-line, 2008. URL http://pagesperso-orange.
fr/sebastien.godard/. Last visited August 10, 2008.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, January 1989.

Boris Gruschke. Integrated event management: Event correlation using dependency
graphs. In Proceedings of the 9th IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management (DSOM 98), Newark, DE, USA, October 1998a.

Boris Gruschke. A new approach for event correlation based on dependency graphs. In
Proceedings of the 5th Workshop of the OpenView University Association, April 1998b.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper
Saddle River, NJ, USA, 2nd edition, 1999.

Horst-Joachim Hoffmann. Systemantwortzeiten als Aspekt der Software-Ergonomie und
der Wirtschaftsinformatik (book review). c’t Magazin für Computertechnik, 25:240–
240, November 2006.

Intel Corporation. Intel R©64 and IA-32 Architectures Software Developer’s Manual, Vol-
ume 3A: System Programming Guide, July 2008. URL http://download.intel.com/
design/processor/manuals/253668.pdf. Last visited August 10, 2008.

Kai S. Juse, Samuel Kounev, and Alejandro P. Buchmann. PetStore-WS: measuring
the performance implications of web services. In Proc. of the 29th International Con-
ference of the Computer Measurement Group (CMG) on Resource Management and
Performance Evaluation of Enterprise Computing Systems – CMG2003, pages 113–
123, December 2003.

Emre Kiciman and Armando Fox. Detecting application-level failures in component-
based internet services. IEEE Transactions on Neural Networks: Special Issue on
Adaptive Learning Systems in Communication Networks, 16(5):1027–1041, September
2005.

102

http://graphviz.org/Documentation/dotguide.pdf
http://pagesperso-orange.fr/sebastien.godard/
http://pagesperso-orange.fr/sebastien.godard/
http://download.intel.com/design/processor/manuals/253668.pdf
http://download.intel.com/design/processor/manuals/253668.pdf

Bibliography

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Akşit and Satoshi Matsuoka, editors, Proceedings European Conference on Object-
Oriented Programming, pages 220–242, Berlin, Heidelberg, and New York, June 1997.
Springer-Verlag, LNCS 1241.

Charles M. Kozierok. The PC guide disk edition. Published on-line, May 2001. URL
http://www.pcguide.com/disk/index.htm. Site Version: 2.2.0 - Version Date: April
17, 2001.

Heiko Koziolek. The role of experimentation in software engineering. In Wilhelm Has-
selbring and Simon Giesecke, editors, Research Methods in Software Engineering, vol-
ume 1 of Trustworthy Software Systems, chapter 2, pages 11–37. GiTO-Verlag, Berlin,
July 2005.

Michael R. Lyu, editor. Handbook of Software Reliability Engineering. IEEE Computer
Society Press and McGraw-Hill, 1996.

Daniel Menascé and Virgilio Almeida. Capacity planning for Web services: metrics,
models, and methods. Prentice Hall, September 2001.

Thomas M. Mitchell. Machine Learning. McGraw Hill, 1st edition, March 1997.

Glenford J. Myers. Methodisches Testen von Programmen. Oldenbourg Wissenschaftsver-
lag, 7th edition, 2001.

Matthias Rohr. Workload-sensitive Timing Behavior Anomaly Detection for Automatic
Software Failure Diagnosis. PhD thesis, Department of Computing Science, University
of Oldenburg, Oldenburg, Germany, 2008. work in progress.

Matthias Rohr, André van Hoorn, Nina Marwede, Simon Giesecke, Wilhelm Hasselbring,
Thilo Focke, and Johannes-Gerhard Schute. Failure diagnosis using timing behavior
anomaly analysis under varying workload intensity. In preparation, 2008a.

Matthias Rohr, André van Hoorn, Jasminka Matevska, Nils Sommer, Lena Stoever,
Simon Giesecke, and Wilhelm Hasselbring. Kieker: Continuous monitoring and on
demand visualization of Java software behavior. In Claus Pahl, editor, Proceedings of
the IASTED International Conference on Software Engineering 2008 (SE 2008), pages
80–85, Anaheim, February 2008b. ACTA Press.

Peter Schwenkenberg. Auswirkung von Programmierfehlern auf Softwarezeitverhalten.
Master’s thesis, Carl von Ossietzky Universität Oldenburg, Germany, August 2007.

Ian Sommerville. Software Engineering. Pearson Studium, Pearson Education Deutsch-
land GmbH, München, Germany, 6th edition, 2001.

103

http://www.pcguide.com/disk/index.htm

Bibliography

Lena Stöver. Evaluation dienstbezogener Abhängigkeiten in komponentenbasierten Sys-
temen. Individuelles Projekt, November 2007. Carl von Ossietzky Universität Olden-
burg, Germany.

Tom’s Hardware Team. What happens when the CPU cooler is removed? Published on-
line, 2001. URL http://video-de.tomshardware.com/video/iLyROoaftlwq.html.
TG Publishing AG, Munich Lab, Germany. Last visited August 10, 2008.

Gabriel Torres. Pentium 4 thermal throttle. Published on-line, March 2005. URL
http://www.hardwaresecrets.com/article.php?id=104. Last visited August 10,
2008.

André van Hoorn, Matthias Rohr, and Wilhelm Hasselbring. Generating probabilistic
and intensity-varying workload for web-based software systems. In Samuel Kounev,
Ian Gorton, and Kai Sachs, editors, Performance Evaluation – Metrics, Models and
Benchmarks: Proceedings of the SPEC International Performance Evaluation Work-
shop (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science (LNCS), pages
124–143, Heidelberg, June 2008. Springer.

Donald Voet, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry:
Life at the Molecular Level. John Wiley & Sons, New York, USA, 2nd edition, March
2005.

Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002. Last visited August
10, 2008.

Cemal Yilmaz, Amit Paradkar, and Clay Williams. Time Will Tell: Fault localization
using time spectra. In Proceedings of the 13th international conference on Software
engineering (ICSE ’08), pages 81–90. ACM, May 2008.

104

http://video-de.tomshardware.com/video/iLyROoaftlwq.html
http://www.hardwaresecrets.com/article.php?id=104

Acknowledgement
I like to thank the modern medicine, and the brave doctors,
who gave me hope and reason to live on.

I like to thank my advisors for their patience, and the exhaustive feedback
on my word screwings and sentence creativities.

“Uhhm... can you spare a minute? Got another question on bash scripting...”

Thanks to my friends at Shio-Sai for giving opportunities to meet interesting people.

A bow goes to Shihan Lauri Jokinen for providing new insights.

Last not least, a big hug to my family and friends for their support.

Relax.

105

Declaration
This thesis is my own work and contains no material that has been accepted for the
award of any other degree or diploma in any university.

To the best of my knowledge and belief, this thesis contains no material previously
published by any other person except where due acknowledgment has been made.

Oldenburg, August 14, 2008

Nina Sophie Marwede

107

	Introduction
	Example
	Goals
	Anomaly Correlator
	Case Study

	Formalia
	Document Structure

	Foundations
	Automatic Failure Diagnosis
	Timing Behavior Anomalies
	Event Correlation
	Distributed Java Web Applications
	Related Work

	Approach
	Solution Idea
	Model building
	Aggregation
	Correlation
	Visualization

	Requirements
	Data Structures
	Input
	Output
	Structure Classes

	Dependency Graph Creation
	Analysis
	Preconditions
	Strategy
	Realization

	Results
	Visualization
	Automation

	Evaluation
	Goals and Metrics
	Experiment Setup
	Application under Analysis
	Monitoring
	Workload Generation

	Fault Injection
	Programming Faults
	Database Connection Slowdown
	Hard Disk Misconfiguration
	High System Load
	CPU Throttling

	Experiments
	Activities
	Results

	Analysis
	Experiment Selection
	Examination Activities
	Default Parameter Selection
	Three Algorithms
	In-Out-Relation
	Edge Weight Methods
	Mean Calculation Methods
	Neighborhood Mean Distance Exponents
	Three Algorithms with New Parameters
	Cross-Check Appliance to Other Fault Scenarios

	Summary

	Conclusions
	Achievements
	Limitations
	Future Work

	Experiment Setup Details
	Experiment Activities
	Instrumentation of the JPetStore
	Preparations for Fault Injection

	Correlator Plug-in Usage
	Package Content
	Tpan Integration
	Machine Interface
	Human Interface

	Correlator Configuration
	General
	Presentation
	Algorithm

	Experiment Instructions
	New Algorithms

	Bibliography
	Acknowledgement
	Declaration

